

From Desktop To Phonetop:
A UI For Web Interaction On Very Small Devices

Jonathan Trevor, David M. Hilbert, Bill N. Schilit
Fuji-Xerox Palo Alto Laboratory

3400 Hillview Avenue
Palo Alto, CA 94304 USA

Tel: +1 650 813 7220
E-mail: {lastname}@pal.xerox.com

Tzu Khiau Koh
Xerox Singapore Software Center

16 Science Park Drive #02-04
The Pasteur, Singapore 118227

E-mail: kohtk@pal.xerox.com

ABSTRACT
While it is generally accepted that new Internet terminals
should leverage the installed base of Web content and
services, the differences between desktop computers and
very small devices makes this challenging. Indeed, the
browser interaction model has evolved on desktop
computers having a unique combination of user interface
(large display, keyboard, pointing device), hardware, and
networking capabilities. In contrast, Internet enabled cell
phones, typically with 3-10 lines of text, sacrifice usability
as Web terminals in favor of portability and other functions.
Based on our earlier experiences building and using a Web
browser for small devices we propose a new UI that splits
apart the integrated activities of link following and reading
into separate modes: navigating to; and acting on web
content. This interaction technique for very small devices is
both simpler for navigating and allows users to do more
than just read. The M-Links system incorporates modal
browsing interaction and addresses a number of associated
problems. We have built our system with an emphasis on
simplicity and user extensibility and describe the design,
implementation and evolution of the user interface.

KEYWORDS: Web browsing, wireless web, web phone,
PDA, transducing, transcoding.

INTRODUCTION
Today most people interact with the Internet using a
desktop computer running a Web browser such as Internet
Explorer or Netscape. Their interaction involves
downloading and viewing HTML documents that include
content (text, images, and user interface components) as
well as links to other Web content (including HTML,
audio, video, Adobe PDF, and Microsoft Office files). The
user, viewing both content and links, will rapidly alternate
between reading and link following. When a user clicks on
a link to a non-HTML document, the browser invokes a
client-side plug-in application to display and in some cases

allow manipulation of the link content.

Although the browser interaction model is well suited for
the desktop computer, it is not well suited for “phonetop”
computers. This is because the usability of the browser
model depends on characteristics of desktop PCs, such as
their large user interfaces (displays, keyboards, pointing
devices), considerable computing resources (CPU, storage,
operating systems), and high bandwidth network
connectivity. Small devices possess few of these
characteristics. Nevertheless, small portable Internet
devices are growing in popularity as Web terminals, and
users expect to be able to access and interact with the same
rich multi-media content available at their desktops.

Thus, designers must consider how to bridge the feature
gap between desktops and very small devices. There are a
number of methods available for putting web content onto
small displays. For the most part, these rely on the notion
of transducing (i.e., converting and transforming) Web
content to fit the small UI. It is our experience with
building and using an early transducing system, along with
observations of colleagues’ browsing activities, which led
us to develop a complementary technique. Our approach is
to not only transform the content, but also to transform the
integrated activity of Web browsing into separate and
simpler modes.

We begin by summarizing the common methods for putting
web content onto small devices and introduce the technique
of modalized web browsing. We then describe how our
system generates a navigation interface and an action
interface for a range of very small devices. We conclude
with our experience using the system and plans for future
work.

PUTTING WEB CONTENT ONTO SMALL DISPLAYS
Mobile web devices span a range of capabilities as shown
in Figure 1. The largest displays can be found on PDA class
devices, like the Palm or Pocket PC, which are capable of
displaying many lines of text and graphics in a single
screen. The mid-range displays, such as the NeoPoint 1000,
can show around 10 short lines of text with more limited
graphics capability. At the lower end are phones like the

LEAVE BLANK THE LAST 2.5cm
OF THE LEFT COLUMN
ON THE FIRST PAGE
FOR US TO PUT IN

THE COPYRIGHT NOTICE!

Samsung SCH-3500 with 4 lines of text and a maximum of
48 characters in total. We characterize very small devices
as being sub-PDA in size, at the middle or low end of this
range.

Make
Model Network Markup Screen Size

(WxH)
Dimensions
(WxHxD)

Palm
Pilot VII HTML

Gray 160x160 pixels 190g
133x83x19mm

RIM
950 Mobitex WML

Gray 132x65 pixels 142g
63x89x23mm

NeoPoint
NP1000 CDMA PCS HDML

WML
120x160 pixels
11x24 chars

181g
140x54x25mm

NEC
N209i TDMA CHTML

Gray
108x82 pixels
9x6 chars

86g
90x46x19mm

Mitsubishi
D209i TDMA CHTML

Color
96x90 pixels
8x7 chars

63g
125x40x15mm

Sony
CMD-Z5 GSM WML

HTML
96x72 pixels
4x17 chars

82g
88x49x21mm

Samsung
SCH-3500 CDMA HDML

WML
96x32 pixels
4x12 chars

154g
112x52x25mm

Figure 1: Characteristics of some small and very
small wireless devices.

The methods for displaying Web information on small
displays fall into four categories: scaling; manual
authoring; transducing; and transforming.

Scaling
Web devices with high-resolution color displays, such as
the Pocket PC with Pocket Explorer, support an experience
that is closest to the desktop (figure 2a). The Pocket PC is
capable of rendering many types of web content “full-size”
and uses scrollbars to reposition the view within the web
page. However, as most Web content is designed for 15”
displays with at least 800x600 pixels, displaying full-sized
pages on small devices results in lots of scrolling by the
user. Alternatively, Web content can be scaled-down in the
viewer, using a “fit to screen” feature, giving the user an
interactive overview of the page. While scaling can reduce
scrolling, it also reduces readability and ease of interaction.
As the device’s screen size and resolution decreases
towards those of very small devices, such as Web phones,
these problems become increasingly significant.

Manual authoring
For devices with lower resolution and smaller sized
displays, the best user experience is achieved by using web
content that has been manually authored (or re-authored) by
professional web and graphic designers for the specific
target device (figure 2b). Manual authoring allows the
content to be laid out or summarized appropriately, and the
interaction design can take into account known device
limitations and idiosyncrasies. Unfortunately because of the
labor required, only a small fraction of Web content has
been manually authored for any particular device.

Transducing
Automated techniques for re-authoring web content have
become popular because they are both cost effective and
allow access to content maintained by third parties.

Transducing is a basic automation technique that involves
translating HTML and images into compatible formats
(many small devices use a different markup language than
HTML). So, for example, a client device can indirectly
request the content through a proxy system, such as Mobile
Google [1] or Wingman [2]. Such proxies retrieve the
required content, transduce it into native formats, and
compress and convert images to match device
characteristics (figure 2c). Once transduced, the user sees a
web page as a set of screens because most pages are too
large to be transferred or rendered on the device as a single
screen due to display size and network protocol limitations.
Transducing systems, such as AvantGo[3], may also work
off-line, giving users access to information when they are
not connected to the network.

Transforming
In addition to making Web content compatible with client
device mark-up language, transducing systems can also
modify content to transform the structure, or experience, of
interacting with the content (figure 2d). For example, the
Digestor system [4] attempted to mimic the expert Web
designer if they were faced with the task of re-authoring
web pages for PDAs by performing semantic compression
and layout modification of Web pages. A web page was
split into multiple sub-pages (each better suited for the
smaller display) and new navigation links were added to
navigate around the sub-pages.

MODAL WEB BROWSING FOR VERY SMALL DEVICES
It was our experience with Digestor that motivated this
research and inspired us to seek new ways to improve the
Web experience on very small devices. Digestor credibly
transduced content for a range of small device types but

(a) scaling (b) manual authoring

(c) transducing (d) transformeing

Figure 2: Techniques for displaying Web
content on small devices content

broke down on very small devices. The problem is that
transducing a desktop-sized UI into many pieces for display
on a mobile phone-sized UI inevitably results in a
complicated structure that is difficult for users to
understand and navigate.

Trying to use Digestor on mobile phones led us to re-
examine the desktop user’s Web experience and the desire
to support that experience. We realized that much
“browsing” involves following links and reading, or more
generally, navigating to information and then using it. Since
small devices have such limited user interfaces, it is very
difficult for users to perform both of these activities at the
same time. Thus, we realized it would be more appropriate
to take the integrated activity known as browsing, and
divide it into two separate modes: navigation and reading.
This led us to separate the underlying link structure from
the content to make the dual tasks of locating and reading
content more manageable on very small devices. Although
modal interfaces on large computers are often unnecessary
and sometimes inappropriate, for small devices they can
provide a significant advantage because they reduce the
number of interactors and information a user needs to see at
any one time. Power Browser [5] adopts a related approach,
but for larger PDA-sized devices.

While separating navigation from reading is useful,
observations of our colleagues’ desktop browsing habits
showed that there is clearly more to Web browsing than
navigation and reading. A common sequence kept
recurring: users would navigate through sequences of pages
following links until they found something of interest.
They would then perform any number of actions including
reading, but also mailing, printing, saving, and even
translating. We realized that an appropriate interface for
very small devices not only separates navigation from
reading, but also generalizes from reading to the ability to
perform any number of different actions on link content.

The separation of interface concerns into two modes
enables a much simpler user experience and increases the
ways in which users can act on content. However,
modifying the interaction to support distinct modes creates
new problems:

Link naming: separating links from page content means
removing contextual cues that can help users understand
where links will lead. This is especially obvious when
links have uninformative labels such as “click here”.
Separating the text surrounding such links from the links
themselves limits the user’s ability to anticipate where the
link will lead them. Thus, we developed link-naming
algorithms to improve link label quality.

Non-linked data: much content of interest to mobile users,
such as phone numbers and addresses, are often not linked
using HTML tags, and thus will not appear in a navigation
view that only shows links. Thus we developed server-side

data detectors to convert such useful bits of information
into explicit links that users can manipulate much like other
links, for instance to place a call (in the case of a phone
number) or to get directions (in the case of an address).

Link overload: there are often more links on Web pages
than lines available for displaying them on very small
devices. To alleviate this problem, we developed link
categorization algorithms to separate links into categories
to aid in navigation and reduce clutter.

Unlimited content types and actions: the set of actions a
user may want to apply to a given link depends on the
link’s type, and there are virtually unlimited content types
and possible actions. Due to limitations inherent in very
small devices (limited user interfaces, processing,
bandwidth, and plug-in applications), we designed a
mechanism to allow users to exploit network-based “plug-
in” services to perform various actions. We made these
services openly extensible to allow third party developers to
associate new services with links based on link attributes,
such as MIME type.

The remainder of this paper discusses, in more detail, how
we solved these problems in our implementation of a modal
web-browsing interface, allowing users to perform a wider
variety of actions on a wider variety of content types than
previously possible on very small devices.

THE M-LINKS MODAL INTERFACE
Before presenting the interfaces, it is worth considering the
features of a representative target device. Figure 3 shows
the input features of a Neopoint 1000 phone [6]. Two “soft
buttons” can be programmed to execute HTTP requests
when pressed and are labeled on the screen immediately
above them (e.g. OPEN and TOOLS). Users can input text
through the phone’s keypad and use the thumb pad to select
an entry in a list or move the input cursor on the display.
Finally the “B” button goes back one page and “M” brings
up the micro-web browser’s menu.

 Browser “Back”
button to go to the
previous page

Menu button

“Soft” keys
The function

label appears on
the LCD, e.g.

OPEN

 Scroll up/down
in a list

Keypad can choose
a list item or
input text &
numbers

Figure 3: Standard web phone input

Figures 4 and 5 show a sequence of interfaces, or pages,
produced by the M-Links system for the Neopoint. Again
this is typical of the displays provided by many web
phones, with capabilities to display 10 lines of text and a
small set of icons.

The home page for M-Links (figure 4 left) prompts the user

to enter the name of a web site they want to visit. Because
entering a URL using a keypad is slow and difficult, the
user only needs to provide the core domain element of the
URL, such as the company name. M-Links expands the
domain by prefixing it with “www” and appending various
top-level domain extensions (“com”, “co.uk” and so on)
until a valid site is determined. The expanded URL is
returned to the user (figure 4 right) who can confirm that is
the correct site, or press the “back” button and specify the
site or page more precisely.

Figure 4: Getting started with the M-Links interface

Figure 5a shows the navigation interface for the Acuson
Solutions home page. The interface is streamlined to only
support the interaction of navigating through the web site
for some content. Therefore the content (or text) of the page
is removed and the system supplies only the parts of the
page necessary to support navigation - the links. These are
represented with closed folder icons in a “list” like interface
that is simple to comprehend and quick to navigate.
Selecting a link from the list using the thumb pad or
pressing the corresponding keypad number traverses to that
linked page. In this example there are more links in the web
page than lines on the phone so the system splits the list
into separate pages. A ‘More’ entry is made available in the
10th list slot and shows how many more links are available
on the current page. Selecting this entry, or pressing ‘0’,
causes more links to be displayed (figure 5b).

A “document” icon indicates links to non-HTML web
content, such as PDF or multimedia. The title of the page
whose links are being displayed is shown top-most with an
open folder icon. Selecting “tools” when this item is
selected causes the interface to switch modes to support the
users selection of an action to execute on that web content.
The M-Links interface changes to display possible actions
that the user can perform on this link (figure 5c). Pressing
the “right” soft key returns the user to the navigation mode
(figure 5d). The user continues to dig down through the
web hierarchy by pressing ‘2’ and gets to Acuson’s contact
information page.

M-Links generates categories for the links on a page to
keep the list to a manageable length, and to keep the
interface simple. One of these, “navigation” (figure 5e
bottom) collects links that are repeated across many pages
on a web site. Web designers produce such links to help
users navigate a site.

M-Links uses the link as a basic unit of manipulation, but
sometimes information the user wants to use may not be
explicitly linked in the HTML. M-Links solves this by
scanning the text, using server side data-detector to create
new links, and then shows these links in the list of
“actionable” items. Figure 5e shows three detected links, a
physical street address and two telephone numbers.
Choosing “Tools” for the street address provides a list of
actions that can accept addresses, such as mapping tools
(figure 5f).

The M-Links navigation interface exploits the user’s
familiarity with desktop file selection dialogs. The Satchel
system [7] also utilizes this metaphor. However, M-Links
does not operate on a well-structured and named file
hierarchy but rather on the hypertext structure of the World
Wide Web, and allows an unlimited number of actions to
be associated with the content of that structure.

THE M-LINKS SYSTEM
Figure 6 shows the M-Links architecture. The system
retrieves documents from the Web using the HTTP
protocol, allows users to navigate and apply services to
Web content, and delivers a suitable user interface to a
variety of small wireless devices using HTTP. There are
three main processing components: (1) the Link Engine,
which creates the navigation interface; (2) the Service
Manager, which creates the action interface; and (3) the
Multi-Device User Interface Generator, which converts the
interfaces into forms suitable for the requesting device and
browser (e.g., HDML).

a b c

d e f
 Figure 6: The M-Links interface on a web-phone

GENERATING THE NAVIGATION INTERFACE
The Link Engine is responsible for processing web pages
into a “link collection” data structure. The Link Engine
works with a Link Cache where link collections for each
processed page are stored. A request for the navigation
interface for a web page involves these steps: (1) an HTML
parser creates a parse tree from the page content; (2) the
text elements in the parse tree are scanned by various data
detectors for patterns (e.g., phone numbers and addresses)
and new links are created; (3) the links are categorized; (4)
each link on the page is extracted and added to the page’s
link collection; and (6) the link collection data passed to the
multi-device user interface generator which creates a page
to be returned to the device.

Page Parsing
The M-Links system uses a variant of the fast HTML parser
used by Digestor to construct a tree of HTML tags and text
elements in an HTML page. All text in the page, between
or around the elements, is also represented in the tree as
special “text” nodes. Figure 7 llustrates how the parser
would represent an HTML fragment.

DIV

B A TXT TXT

TXT TXT

<div>The cat sat on the mat</div>

Figure 7: Parse tree representation of an HTML
fragment

Many web pages make extensive use of HTML frames.
Whenever the parser encounters a FRAMESET element it
recursively calls itself to iterate through each FRAME
element. As each frame is loaded and parsed, its
representation is inserted into the tree, which in effect
flattens the frame structure.

When designing M-Links we decided not to support HTML
scripting elements such as JavaScript or VBScript. In part
this is justified because scripts are often concerned with the
rendering of the page, such as highlighting an image under

the cursor. Since the M-Links interaction with a web page
is very different than the desktop interaction, these script
elements are not useful. However, other scripting elements
perform structure or content changes to the page, such as
generating interactive navigation menus. In practice,
ignoring these elements is not a significant problem for two
reasons. First, authors of many scripted pages also provide
“hidden” or extra links for non-script supporting browsers.
These are picked up by our HTML parser and fed directly
into the link engine. Second, since most search engines also
ignore scripting elements, most sites provide alternative
pages for accessing the site.

Data Detection
Server-side data detectors provide an extensible mechanism
for identifying elements of a web page on which users may
want to perform actions, but which are not represented as
an HTML anchors or tags. The current system has two such
detectors, for phone numbers and addresses. M-Links data
detectors are functionally similar to Data Detectors [8] and
the selection recognition agent [9] but run on the M-Links
server as opposed to on client devices.

Once the page has been parsed the hierarchy is passed to
each data detector in turn. When a detector finds a match it
modifies the hierarchy to insert a virtual “link” or data
detection element that spans the text (and possibly other
elements) containing the data in the hierarchy. Each data
detection element is assigned an “HREF” property that
contains target information about the virtual link. For an
address this is the street address (as extracted). For a phone
number this is a “WTAI:” URL identifier that would allow
a web phone to dial the number when “followed”.

Link Extraction and Naming
Once the parse tree has been constructed and modified by
data detectors, links are extracted and given appropriate
display names for the interface. The Link Engine generates
the link collection by traversing the tree looking for
elements with an HREF property (such as <A> elements
and data-detected links) or AREA elements.

The Link Engine then employs a link naming algorithm to
determine concise but meaningful link labels to present to

Figure 6 The M-Links architecture

M-links

C
H

T
M

L

U
se

r
In

te
rf

ac
e

G
en

er
at

o
r

W
M

L
H

D
M

L
H

T
M

L

Devices

Fax

PrintStore

Web Documents

Fulfill

Summarize

World Wide Web

Service
Menu Web Document

Services

Link
Engine

Link
Cache

HTML
Parser

Data
Detectors

Svcs
Registry

Basic Services

ReadNavigate

Send Mail

M-links

C
H

T
M

L

U
se

r
In

te
rf

ac
e

G
en

er
at

o
r

W
M

L
H

D
M

L
H

T
M

L

Devices

Fax

PrintStore

Web Documents

Fulfill

Summarize

World Wide Web

Service
Manager Web Document

Services

Link
Engine

Link
Cache

HTML
Parser

Data
Detectors

Svcs
Registry

Basic Services

ReadNavigate

Send Mail

Basic Services

ReadNavigate

Send Mail

M-links

C
H

T
M

L

U
se

r
In

te
rf

ac
e

G
en

er
at

o
r

W
M

L
H

D
M

L
H

T
M

L

Devices

Fax

PrintStore

Web Documents

Fulfill

Summarize

World Wide Web

Service
Menu Web Document

Services

Link
Engine

Link
Cache

HTML
Parser

Data
Detectors

Svcs
Registry

Basic Services

ReadNavigate

Send Mail

Basic Services

ReadNavigate

Send Mail

M-links

C
H

T
M

L

U
se

r
In

te
rf

ac
e

G
en

er
at

o
r

W
M

L
H

D
M

L
H

T
M

L

Devices

Fax

PrintStore

Web Documents

Fulfill

Summarize

World Wide Web

Service
Manager Web Document

Services

Link
Engine

Link
Cache

HTML
Parser

Data
Detectors

Svcs
Registry

Basic Services

ReadNavigate

Send Mail

Basic Services

ReadNavigate

Send Mail

the user. The algorithm identifies a set of different possible
labels for each link and assigns each a quality value
representing how “good” or meaningful that label is. The
lowest quality label is the link’s URL itself. The highest
quality label is assumed to be the title of the document at
the link’s destination (for HTML pages) as page authors
generally make titles meaningful for bookmarking. Other
label sources include: the anchor text of a link; the alt-text
associated with an image link; and the link’s relative URL
path (excluding the host name and so forth).

When different links (to different documents) share the
same name label the algorithm discards the label, moving to
the next highest quality label in the links label set. The new
labels are checked again to ensure the uniqueness of the
new labels, guaranteeing a distinct label for each different
link appearing in the final user interface.

Link Categorization
After links are labeled, the Link Engine categorizes them,
which has two main benefits. First, it allows the system to
present a much more streamlined interface. By hiding links
in certain categories from the user the interface becomes
less cluttered and more compact. Secondly, the user can
quickly focus or direct their navigation actions by
exploiting the presence of these categories. For example, if
the user wants information about how to get to or contact a
company it is probably accessible through a link on some
navigation bar on the company web site. Currently two
types of categories are determined: off-site and navigation.

Off-site
An “off-site” category is assigned for links that refer to
documents at a different web site from the document being
processed. For example, when processing (1) below, links
to (2) are considered on-site while links to (3) are not.

1. http://abc.here.com/index.htm
2. http://def.here.com/docs.htm
3. http://abc.there.com/main.htm

The categorization algorithm begins by extracting the
server's domain name from the URL and discarding the
protocol, port, and other components of the URL. To avoid
miscategorizing URLs that indicate multiple servers on the
same site (e.g. 1 and 2 above), the algorithm constructs a
"site identifier" for each URL by working backwards from
the top-level domain (TLD) collecting up to two domain
name components if it's a general, or gTLD (e.g., com, edu,
gov, int, mil, net, org) and up to three components if it's a
country code, or ccTLD (e.g., au, fr, uk, etc.). These site
identifiers (e.g., "here.com" and "there.com") can then be
compared against the site identifier for the page being
processed ("here.com") to separate off-site from on-site
links.

Navigation
A “navigation” category is used to classify links that are
used throughout a site to navigate from anywhere to

common index pages. Figure 8 shows links from Xerox’s
home page considered navigation links. Navigation links
are identified using a number of page layout heuristics. The
categorization algorithm examines adjacent links and
attempts to verify: (1) that they reside on the same
hierarchical level in the parse tree, (2) that any intervening
text between them is identical and acceptable (e.g., "|", "-",
or "]["), and finally, (3) that the transitions, or intervening
"paths" in the parse tree, between them are identical and
acceptable (e.g., they occur in adjacent table cells or in the
case of links with image anchors, may be separated by line-
breaks
 or paragraph tags <P>). The set of links at the
bottom of figure 8 alls into the navigation category because
of the recurring “|” character between anchors at the same
depth in the page hierarchy.

Figure 8: Navigation links on www.xerox.com

Because the parse tree represents Web pages as
containment hierarchies, the hierarchical level for each link
can be determined by simply walking up the parse tree. If
the hierarchy level is equal, then the intervening text and
paths between navigation candidates is examined. Links
with textual anchors (indicated by the <A> tag) or image
anchors (indicated by the tag) must occur in
sequence with identical intervening text and paths between
them. However, since the paths that are acceptable between
<A> links are not the same as the paths that are acceptable
between links, there is a look-up table that lists
acceptable paths per link type. Finally, links occurring in
image maps (indicated by the <AREA> tag) are assumed to
provide site navigation functionality and therefore are
included regardless of inter-link paths. We have found that
while these heuristics are not foolproof, they are acceptable
for the majority of the web sites we've examined.

GENERATING THE ACTION INTERFACE
The Service Manager creates the action interface, which
presents “tools” that users can use once they have located
content using the navigation interface. These are not limited
to reading or displaying the content on the device, and
include desktop-like operations such as saving the content,
emailing a link to a friend, or faxing and printing.

The action interface can support “compound” interactions
implicitly exploited by desktop users. For instance,
selecting a data-detected address link and retrieving
directions in M-Links is analogous to copying an address
from one Web page and pasting it into the Yahoo! Maps
page to get directions on the desktop. In many respects the
action interface works like “cut and paste” between
applications on the desktop computer – taking a link from
the browser’s web page and pasting it into an application,
whether that application is another browser (with an web-
based service page), or some email the user is preparing, or
the user’s file system and so on.

When the user selects a link in the navigation interface and
chooses “Tools,” M-Links receives the request and passes
the link to the Service Manager. The Service Manager
constructs the action interface by adding actions
appropriate to the selected link. There are a number of
actions that are applicable to all links: “Read” allows the
user to view the content of the page around the link (see
below); and “About” returns a page showing the properties
of the link’s target, such as the URL, size and mime-type.
The Service Manager evaluates a set of rules that each
service specifies against the attributes of the link (e.g. the
MIME-type of the link), the characteristics of the user’s
client device (e.g. the markup the device supports), and the
user’s identity (their email address). If all the service rules
are satisfied then the service is added to the action
interface. In this way a service developed to play audio files
will appear only when an audio file is the selected link.
When the list of actions becomes too large for one page, the
last entry in the list is replaced with “More” which requests
the next page of services.

There are two sources of services available to the M-Links
architecture: general and content provider. General services
are Web-based services hosted on particular sites that have
previously been identified to the system. Users can specify
which services they would like to see for which kinds of
links. Content provider services allow web site owners to
control the services available for links to their web site.
These are specified in a “services.xml” file at the root
directory relative to the link. This allows a content provider
to include a set of customized services for their content. For
example the web site www.patents.com might provide a
service for overnight delivery of high quality patent
documents.

Defining and Extending Services
The service specification document is the mechanism by
which both general and provider specific services are
introduced to the system and appear in the action interface.
Figure 9 shows an abbreviated version of the XML-based
specification for an email service. There are three main
sections in a service specification:

1. The rule section describes when the service should be
presented to the user as a possible service to be invoked.

The section includes predicates that declare the required
attributes of the link, the type of client device, and the
identity of the user.

2. The execution section describes what URL should be
executed when the service is selected. The service is
activated using an HTTP request with a number of
parameters, including the link to operate on, the user
identity and so on.

3. The presentation section is separated into subsections for
different languages. Each language element provides
short and long labels to present to the user, as well as a
longer description. A set of icon tags provides links to
various graphical elements that can also be used when
displaying the service to the user.

The XML format for service specification allows one or
more files to be included, and allows other external
specifications to be referenced using URLs which are
resolved and substituted during the validation of the XML.

<service-group ID="email-group">
 <service ID="email">
 <rule>
 <accept match="any">
 <client-accepts>.*text/html.*

 </client-accepts>
 <client-accepts>.*text/x-hdml.*

 </client-accepts>
 </accept>
 <reject>
 <source-mimetype>URL/.*

 </source-mimetype>
 </reject>
 </rule>
 <execution>
 <execute>/mailto</execute>
 </execution >
 <presentation>
 <language ID="en">
 <service-name>email document

 </service-name>
 <short-name>Email Link</short-name>
 <description>

Email a URL or the URL
and its contents to yourself
or a friend.

 </description>
 </language>
 <icon output-format="text/x-hdml">

envelope1
 </icon>
 </presentation>
 …
 </service>
…
</service-group>

Figure 9: An email service specification

Adding new services to M-Links system is as simple as
submitting a URL with the location of the service
description file. The M-Links system then fetches and
checks the description for validity, and adds it to the service
registry. The next time a service menu is generated for a
link the service rules will be checked and the service can
appear in the menu.

We have experimented with a number of general services,
which can be broadly categorized into: reading, for
displaying content on the device; sending, for moving the
link or content to a user via email, or WAP-alerts; printing

for getting faxed or printed copies of content either at work
or while mobile; and mapping, to get directions and print
out maps of an address. While the various reading services
enable link content to be displayed, such as PDF or HTML
we remain convinced that reading is not the primary action
people want to perform on content on such small devices.
However it is often necessary to “check the contents”
before proceeding with another action such as faxing and
this is one of the most common uses of the reading services.

MULTI-DEVICE INTERFACE GENERATION
M-Links supports a variety of different compact user-
interfaces to handle the variety of small devices that may
access the system. For example, HDML and WML markup
is used by web-phones, and HTML by most palm-sized
devices. However, while the markup supported by the
various client browsers on these devices differs, the actual
underlying functional and interaction model of the interface
is very similar. For example, all the different markup
language interfaces provide a screen where the user can
input a web site to be navigated. The UI Generator exploits
this shared functionality using a combination of “template
markup files” and program inheritance. Together these
support a multi-view interface for the different device
types.

The Multi-Device User Interface Generator outputs the
final user interface by: (1) identifying the type of device
making the request; (2) determining the appropriate type of
response markup; (3) extracting various pieces of
information from the request (such as the HTTP headers);
(4) dispatching it to the relevant interface markup handler
(for the identified markup type) to generate the interface;
(5) returning the markup to the device. The same sequence
is used for both the navigation and action interfaces.

Although the final markup may be different from device to
device, the actual variables involved remain the same.
Therefore M-Links employs a simple template substitution
technique across most of the different interface screens in a
similar manner to many web-based applications like BSCW
[10]. The same base interface code is responsible for
generating the variable values from request to request for
that interface. These values are substituted into named
fields that have been inserted into the template for a given
screen. Figures 10 and 11 show two different templates
used to generate the same interface in HDML and HTML.

Substitution on templates also enables the system to support
many languages in addition to supporting many devices.
The multi-device interface generator uses knowledge of the
font encoding for the target web page to encode link labels
in the font intended by the author (figure 12). Users can
also specify in what language M-Links should be used to
return the various menus, prompts, and messages. Selecting
a different language causes the UI generator to simply
choose a different set of markup templates (marked up
using the users preferred language). When no equivalent

language-specific template can be found, the system returns
the English (default) version.

<HDML VERSION=3.0 MARKABLE=TRUE>
<ENTRY DEFAULT="%(defaulturl)" KEY=u FORMAT=*x>
<ACTION METHOD=GET TYPE=ACCEPT LABEL="GO"
 TASK=GOSUB FRIEND=TRUE DEST="%(next)?u=$u">
<LINE>Enter a web site:<LINE>Ex: cnn or bbc.co.uk
</ENTRY>
</HDML>

Figure 10: An HDML template markup file for the site
address input screen.

<html>
<head>
<title>Input</title>
</head>
<body bgcolor="#FFFFEE">
<h2></h2>
<table border="0" width="530" height="100">
 <tr>
 <td width="523" height="51">
 <h2>Web Links</h2>
 </td>
 </tr>
 <tr>
 <td width="523" height="40">
 Enter the name or URL of the web site where you
 would like to visit :</td>
 </tr>
</table>
<form method="get" action=%(next)>
<table border="0" width="530" height="50">
 <tr>
 <td width="465" height="11">
 <input name="u" size="65" value=%(defaulturl)></td>
 <td width="465" height="11">
 <input type="submit" value="Go"> </td>
 </tr>
 <tr>
 <td width="465" height="27"><i>
 (E.g. cnn or bbc.co.uk)</i>
 </td>
 …
</body>
</html>

Figure 11: An HTML template markup file for the site
address input screen

Figure 12: Font encoding in the M-Links interface

Finally, in more complex interface situations, where the
supported functionality or methods of interaction differ
significantly between different devices and markup
languages, the base interface generator is sub-classed by the
markup handler to extend and tailor the functionality.

In generating both the navigation and action interfaces, we
were forced to contend with strict restrictions on web
phones on the byte size of pages that phones can fetch and
display (part of the WAP standard). As a result, rather than
embedding actual URLs in our interfaces, we use link

offsets (in the navigation interface) and unique link
identifiers (in the action interface) to reduce the size of the
pages sent to client devices. Consequently, in the action
interface, the Service Manager directs requests back to M-
Links identifying the selected service and target URL using
its unique identifier. The manager then redirects these
HTTP requests to the appropriate web server as determined
by the service description. This final redirected request
identifies the URL target, the user, a return URL (back to
the system once the operation completes), and a number of
optional parameters. Identifying the link and service using
small identifiers nearly halves the byte size of the action
interface, allowing more actions to be displayed per page
and a quicker transmission time.

IMPLEMENTATION, EXPERIENCE AND DISCUSSION
Our implementation of the M-Links system runs on a Java
Servlet engine under Microsoft’s IIS web server. We have
been running the system continuously on a Pentium III
processor with 256 MB of memory connected to a T1
network connection for over 6 months.

Performance
In this configuration the latency for generating the link
interface for a cached page is approximately 2 seconds. The
link cache stores the link structure derived by the Link
Engine (which may be in memory or, in the worst case, has
been serialized to disk) and therefore the only significant
processing that occurs is the re-generation of the interface
from the various multi-device interface templates in
response to the request.

Where the page had not been pre-cached it needs to be
fetched and processed. Consequently the time taken to
service such requests is significantly longer. The processing
itself, for an average page size, takes approximately 3
seconds, so when a web site returns the page quickly to M-
Links (in 3 seconds for example) the total latency from
receiving the request to returning the reply is around 6
seconds. Unfortunately we have found a number of sites
perform very badly in returning pages - to the extent where
the device making the original request can occasionally
time out waiting for a response from M-Links (which is
waiting for a response from the actual page’s web server).
Re-submitting the same request generally succeeds
immediately as M-Links continues to attempt to fetch and
process the page in the background. Fetching and
processing is a “one time” time penalty that only occurs on
the first request for an un-cached page (or a page that has
changed since being caching). Subsequent requests for the
same page perform with cached latency.

To reduce the initial latency penalty for many common web
sites, we seeded the link cache with pages using a crawler
and parsing pages off the Yahoo directory. A useful side-
effect of this seeding is that we could provide a set of
HTML pages (which could be parsed and presented by M-
Links itself) which acted as a set of pre-built bookmarks for

our users, removing the need to enter URLs in many cases.

It is worth pointing out that wireless devices (even on a
wireless LAN), often experience significant delay in
establishing a network connection for the request and
receiving the data in response, and most web phones only
support a connection speed of 14.4 KBps. Consequently we
have found that for web sites that return pages even
moderately quickly, the differences in perceived
performance between cached and un-cached requests is
negligible.

Additional Link Context
It became clear in early prototyping that the separation of
the links from the content produced an interface that is
clean, simple and vastly easier to use than any interface
relying on transducing or transformation alone. However a
consequence of this separation was a loss of context or
information that normally surrounds a link on a page. This
loss was especially pronounced on the data-detected phone
numbers links - is the number a fax number or a phone
number?

Figure 13: Tightly integrating a “reading” view with
the link view

To address this problem the M-Links system more tightly
integrated the HTML reading service to provide a “read
around” feature (figure 13). This was provided in the
interface through an option on the tools menu or via an
additional programmable key on some web phones.
Pressing the key or selecting the action toggled the view of
the page to display the page text surrounding that link.

Portal Sites
Portal sites present a significant problem for our model of
interaction where links are the primary component of the
navigation interface. Sites like Yahoo or Excite often
contain pages with over 200 links, which equates to at least
20 different M-Links pages. Finding an appropriate link in
such situations can be time consuming. Transformation
systems, like Digestor, perform better for these types of
pages as they naturally separate areas of the page into
distinct pages and provide an index into those areas – which
mirrors the structure of how groups of links are laid out on
portal pages. Web pages with large numbers of links remain
an open problem with our solution.

Styles of Browsing
Finally, it is worth noting that our modal interface best
supports directed browsing – where the user is following

links in an attempt to find some particular content. More
casual browsing, following links to see if there is anything
useful on a site, does not work well in this model (and we
would argue casual browsing cannot be well supported very
small devices due to the inherent display restrictions). This
is because the activities of navigating and acting are so
closely intertwined a modal interface requires a user to
keep switching modes to see if the page was of interest, and
if not to select a new link to follow. In practice, the M-
Links system supported this as well as other transducing or
transformation solutions. The reading action transduced
HTML pages and allows users to follow links in the content
and continue the reading action on the new page.

FURTHER WORK
The M-Links architecture can easily be extended to support
more types of link categorization than offsite and
navigation. Categories could be based on the link
destinations MIME type (e.g., PDF files, MPEG files, MP3
files) as well as based on layout characteristics (e.g., links
separated into frames, table rows, columns and cells). By
exploiting categories we may be able to further tighten the
user’s interaction and make finding useful content on large
(through filtering), or poorly laid out web sites faster.
Research is required to determine when such categories
such be displayed or used, and we are concerned that the
proliferation of categories may actually lead to more
cumbersome interface.

From observations of use it is clear that for most people
inputting text using a keypad, even in small amounts, is
non-intuitive and a frustrating experience. We have started
work on integrating the maturing technologies of speech
recognition and VXML [11] to allow the system to
seamlessly support mixed media input to dialogs and forms,
as well as alternative forms of output.

CONCLUSION
Our experiences with the Digestor system and problems
with other methods for putting web content onto small
devices led us to consider how we could give users a simple
interface for accessing and manipulating all types of web
content, not just HTML. This paper presented an alternative
approach that could work with existing methods, to make
the user’s browsing experience more modal.

We identified two different modes involved when browsing
the web: navigation and action. The M-Links system
supports these modes in separate interfaces. By focusing
strictly on navigating the link structure, we were able to
produce a simple list-based navigation interface that
separates the content out. The content remains accessible
through the action interface, allowing many different types
of action other than reading to be executed on the content.

However adopting a more modal approach to presenting
web content on very small devices creates new problems:

link naming; non-linked data; link overload; supporting
unlimited link types and actions. M-Links addressed these
problems using link-naming algorithms to improve link
label quality; server-side data detectors to convert such
useful bits of information into explicit links; algorithms to
separate links into categories; and a flexible XML-based
mechanism for associating multiple (third-party) web-based
services with links based on link attributes.

REFERENCES
1. Mobile Google, search engine for WAP and Palm

devices, http://mobile.google.com/.

2. Armando Fox, Ian Goldberg, Steven D. Gribble, David
C. Lee, Anthony Polito, Eric A. Brewer. Experience
With Top Gun Wingman, A Proxy-Based Graphical
Web Browser for the USR PalmPilot. Proc. IFIP
International Conference on Distributed Systems
Platforms and Open Distributed Processing
(Middleware '98), Lake District, UK, Sept. 1998

3. AvantGo, web browsing and caching for wireless
devices, http://www.avantgo.com/.

4. Timothy Bickmore and Bill N. Schilit. Digestor:
Device-Independent Access to the World Wide Web.
Proceedings from the Sixth International World Wide
Web Conference (Santa Clara, 1997).

5. Orkut Buyukkokten, Hector Garcia-Molina, Andreas
Paepcke, and Terry Winograd. Power Browser:
Efficient Web Browsing for PDAs. In Proceedings of
CHI 2000.

6. Neopoint1000 phone details http://www.neopoint.com/

7. Mik Lamming, Marge Eldridge, Mike Flynn, Chris
Jones and David Pendlebury, Satchel: providing access
to any document, any time, anywhere. ACM
Transactions on Computer-Human Interaction, Vol. 7,
No. 3, 2000.

8. Bonnie A. Nardi, James R. Miller, David J. Wright:
Collaborative, Programmable Intelligent Agents.
Communications of the ACM, Vol. 41 No. 3, March
1998.

9. Milind S. Pandit, Sameer Kalbag. The selection
recognition agent: Instant access to relevant
information and operations. Proceedings Intelligent
User Interfaces '97. New York: ACM Press.

10. Bentley, R., Appelt, W., Busbach. U., Hinrichs, E.,
Kerr, D., Sikkel, S., Trevor, J. and Woetzel, G. Basic
Support for Cooperative Work on the World Wide
Web, International Journal of Human-Computer
Studies: Special issue on Innovative Applications of
the World Wide Web, Spring 1997

11. The Voice eXtensible Markup Language (VXML)
Forum, http://www.vxml.org/

