
0018-9162/02/$17.00 © 2002 IEEE October 2002 37

Web
Interaction
Using Very
Small Internet
Devices

M
ost computer users interact with the
Internet from a desktop or laptop com-
puter running a Web browser such as
Internet Explorer or Netscape. Inter-
action typically involves downloading

and viewing documents that include content as well
as links to Adobe PDFs, audio, video, Microsoft
Office, and other HTML documents. Users tend to
view content and links together, rapidly alternating
between reading content and following links. When
a user clicks on a link to a non-HTML document,
the browser invokes a client-side plug-in applica-
tion to display the linked content and in some cases
lets the user manipulate it.

Because this traditional Web browser interaction
model evolved on desktop computers, its user inter-
face, hardware, and networking assumptions are
uniquely suited to a desktop or laptop machine. In
contrast, Internet-enabled cell phones, or “phone-
tops,” typically accommodate only three to 12 text
lines, and their design emphasizes portability and
features such as battery life, audio clarity, and ease
of selecting names from a phone book. Web inter-
action has, so far, been a secondary concern.

In some countries where cell-phone-based Inter-
net users come close to outnumbering their desk-
top counterparts, many content providers create
new content for very small displays. Yet overall,
most Web content providers are neither equipped
nor have the desire to do this tailoring, so hand-
crafted pages for phonetops represent only a frac-
tion of the pages available to desktop users.

For the most part, automated techniques to
address the feature gap between desktop and
phonetop rely on the notion of transducing—trans-
lating HTML and images into formats compatible
with small devices, which typically cannot handle
HTML content. The “Fitting Desktop Content in a
Small Display” sidebar describes fitting techniques
in transducing and three other categories: scaling,
manual authoring, and transforming.

Of the four techniques, transforming has the
most potential for widespread use because, in the
ideal case, it closely resembles professional content
tailoring to a particular device yet without the man-
ual overhead. A transforming system modifies both
the content and the structure, or experience, of
interacting with the content, as well as transducing

Squeezing desktop Web content into smart
phones and text pagers is more practical
with separate interfaces for navigation
and content manipulation. m-Links, a
middleware proxy system, supports this
dual-mode browsing, offering mobile users
a range of actions on any Web link.

Bill N. Schilit
Intel Research

Jonathan
Trevor
David M.
Hilbert
FX Palo Alto
Laboratory

Tzu Khiau
Koh
Xerox Singapore

C O V E R F E A T U R E

38 Computer

to the appropriate markup language.
An example of a transformer for PDAs and lap-

tops is the Web Reader’s Digestor,1 a proxy that
intelligently splits a Web document into multiple
subpages that better suit the smaller display and
inserts new links for navigating among subpages.
The system’s goal is to relieve the Web designer of
the need to reauthor Web pages for PDAs.

We experimented with using Digestor and found
that, although it credibly transduced content for a
range of small devices, such as PDAs, it broke down
on very small devices, such as Internet phones. The
resulting interface structure was just too difficult for
users to understand and navigate.

As we explored alternatives to duplicating the
desktop user’s Web experience, we realized that
browsing often involves both following links and
reading, or more generally, navigating to informa-
tion and then using it. Moreover, we saw that users
often mailed, printed, saved, and even translated
Web content—activities that a desktop interface
could easily support, but not the limited interface
of very small devices. Thus, rather than simply

transforming pages for smaller screens, the direc-
tion should be to transform the Web browsing inter-
action into two separate modes: navigating to and
acting on content.

On the basis of our Digestor experiments, we
developed a Web browsing model that supports
navigation and action in separate interfaces. To
demonstrate the model, we created m-Links, a mid-
dleware proxy system that retrieves Web docu-
ments using HTTP, lets users navigate and apply
services to Web content (URLs), and delivers a suit-
able user interface to a variety of small Web-capa-
ble wireless devices.

m-Links is both simple to use and powerful. Its
simplicity comes from the navigation interface:
Separating links from page content makes naviga-
tion a matter of selecting a link from a list. Its power
comes from the action interface: Because users can
apply various Web-based services to any link, they
can do more with content than simply read it on
their phones.

In creating m-Links, we met four important chal-
lenges of a modal Web browsing system:

Mobile Web devices span a range of capabilities. PDA-class
devices like the Palm or Pocket PC can display many lines of text
and graphics in a single screen. Midrange displays, such as the
NeoPoint 1000, can show around 12 short lines of text with lim-
ited graphics capability. At the lower end are pagers and phones
like the Samsung SCH-3500 with four lines of text and a max-
imum of 48 characters. We characterize very small devices as
being sub-PDA in size, at the middle or low end of this range.

Methods for displaying Web information on these very small
devices typically fall into four categories. Figure A shows how
each method produces a different display.

Scaling
Web devices with high-resolution color displays, such as the

Pocket PC with Pocket Explorer, provide a user experience that
is the closest to desktop browsing. Figure A2 shows a display
from the Pocket PC, which can render many types of Web con-
tent at full size with scrollbars to reposition the view. It can also
scale down Web content in the viewer, using a fit-to-screen fea-
ture. However, although scaling can reduce scrolling, it also
reduces readability and ease of use. As the device’s screen size
decreases, regardless of resolution, these problems become more
severe. The other three techniques are better suited to the limited

Fitting Desktop Content in a Small Display

Figure A. Techniques for displaying Web content on small devices: (1) Scaling desktop content is possible on larger, graphics-capable,
PDA-sized devices such as a Pocket PC. (2) Manual authoring by a professional designer produces a more custom and often less cluttered
display for smaller devices. (3) Transducing literally converts desktop content into a linear sequence of subpages. (4) Transforming desktop
content goes further by introducing new organizational structure, such as a table of contents.

(1) (2) (3) (4)

October 2002 39

• Link naming. Separating links from page con-
tent also removes contextual cues that help
users understand where links will lead. This is
especially obvious when links have uninfor-
mative labels such as “click here.” m-Links
uses link-naming algorithms to improve link-
label quality.

• Unlinked data. Much content of interest to
mobile users, such as phone numbers and
street addresses, is not linked using HTML
tags, and therefore will not appear in a navi-
gation view that shows only links. m-Links
incorporates data detectors to extract these bits
of useful information. Users can select these
much like other links and invoke link-specific
actions, such as placing a call.

• Link overload. A Web page often has more
links than the device display has lines, so m-
Links groups some links into categories that
the device can display in a single line.

• Unlimited content types. The Web includes
countless types of content not well suited to
Internet phones. To maximize the ability to

perform useful actions on any content, m-
Links lets users apply multiple network-based
services (similar to browser plug-ins) on any
link. m-Links decides which services are avail-
able for each link on the basis of that link’s
attributes, such as MIME type.

In this article, we describe how we met these
challenges. The technical details of the user inter-
face and system are available elsewhere.2,3

M-LINKS INTERACTION
When phonetop users open a Web page through

the m-Links proxy, they see a list of links from that
page and can dig through the list in the same way
they might dig through folders in a file dialog to
select a filename.

When users find a link, they may invoke a ser-
vice, analogous to right clicking on a document and
using the context menu on a desktop interface.
Although users can’t do very much directly on the
cell phone with content types such as PDF docu-
ments, MP3s, or MPEGs, m-Links users can always

screens of very small devices.

Manual authoring
Users typically have the best experience when the content

provider—a professional Web or graphic designer—has tailored
the Web content to fit their particular device. The content is laid
out and summarized appropriately, and the interaction design
takes into account known device limitations and idiosyncrasies.
A similar approach employs manually authored page templates
for each device type and populates these templates with content
from a database. Unfortunately, because of the labor required,
only a small fraction of Web content in Europe and the US is
manually authored for any particular device. In Japan, where
desktop computer penetration is lighter, the i-mode service pro-
vides many Web phone users with access to specifically authored
compact HTML pages, but not to general Web content or other
types of documents.

Transducing
Automated techniques for reauthoring Web content have

become popular because they are both cost-effective and allow
access to content that providers have not manually authored for
very small devices. Many small devices use a markup language
other than HTML.

Transducing is a basic automation technique that translates
HTML and images into one of these other formats, which means
that a client device can indirectly request the content through a
proxy system, such as Mobile Google (http://mobile.google.com)
or Wingman.1 Such proxies retrieve the required content, trans-
duce it into native formats, and compress and convert images
to match device characteristics. Once transduced, a Web page
appears to the user as a set of screens. Figure A3 shows an exam-

ple. Most pages are too large to be transferred or rendered on
the device as a single screen because of display size and network
protocol limitations. Transducing systems, such as AvantGo
(http://www.avantgo.com), which offers Web browsing and
caching for wireless devices, can also work offline, giving users
access to information when they are not connected.

Transforming
In addition to making Web content compatible with device

formats, transforming systems modify content to transform the
structure, or experience, of interacting with the content. The
Digestor system,2 for example, attempts to mimic an expert Web
designer faced with the task of reauthoring Web pages for PDAs.
It modifies the Web page layout, splitting it into multiple sub-
pages (each better suited for the smaller display) and adding nav-
igation links so that the user can navigate the subpages. Power
Browser3 adopts a similar approach for reading content on larger
PDA-sized devices.

References
1. A. Fox et al., “Experience with Top Gun Wingman, A Proxy-Based

Graphical Web Browser for the 3Com PalmPilot,” Proc. IFIP Int’l
Conf. Distributed Systems Platforms and Open Distributed Pro-
cessing (Middleware 98), N. Davies, K. Raymond, and J. Seitz, eds.,
Springer-Verlag, London, 1998, pp. 407-424.

2. T.W. Bickmore and B.N. Schilit, “Digestor: Device-Independent
Access to the World Wide Web,” Computer Networks and ISDN
Systems, vol. 29, nos. 8-13, 1997, pp. 1075-1082.

3. O. Buyukkokten et al., “Power Browser: Efficient Web Browsing
for PDAs,” Proc. Conf. Human Factors in Computing Systems
(CHI 00), ACM Press, New York, 2000, pp. 430-437.

40 Computer

do something with any content they find. For exam-
ple, a user can navigate to a link to a PDF docu-
ment and e-mail the PDF (or URL) to himself for
later use at the desktop by selecting the link and
applying the e-mail service.

Consider the Neopoint 1000 phone in Figure 1a.
The phone has two soft keys, which can be pro-
grammed to execute HTTP requests when pressed.
The programmed functions in this case are Open
and Tools, which the phone displays on the screen
immediately above their respective buttons. The
user inputs text through the phone’s keypad and
uses the thumb pad to select an entry in a list or
move the input cursor on the display.

Figure 2 shows a navigation sequence for a
Neopoint 1000 user running m-Links. The se-
quence starts at the homepage of Acuson Solutions,
a medical equipment manufacturer. Users typically
start at the m-Links server homepage and enter a
desired site. Because entering long URLs on the key-
pad takes time, users can enter just the core domain
element, such as the company name. m-Links
expands this by adding the “www” prefix and
appending various top-level domain extensions—
.com, .gov, co.uk, and so on—until it determines a
valid site. It then returns the expanded list of valid
URLs to the user for confirmation or correction.

Once the user selects the desired URL, m-Links
removes the text on that page and displays only the
links—the parts needed to support navigation. The
user selects each link, represented by a closed folder,
by using the thumb pad or pressing the corre-
sponding keypad number. Selecting list items in this
way is one of the few interactions that very small
devices are designed for. When the Web page has
more links than the phone has lines, m-Links splits
the list into separate screens.

A document icon indicates links to non-HTML
Web content, such as PDF or multimedia. At the
top of each displayed list is the title of the Web page,

Figure 1. Typical very small Internet devices. (a) The Neopoint 1000 Internet-enabled cell phone and (b) the RIM BlackBerry 850 e-mail and
Internet-enabled pager.

Figure 2. The m-Links interface on the Neopoint 1000. (a) The user starts with a
list of links to navigate the Acuson Solutions homepage, which he reached by
entering Acuson on the m-Links home page. The More item (bottom of screen)
collects remaining links on the current page that would not fit on the current
screen. (b) When the user selects More, m-Links displays the remaining links.
(c) When the user presses the Tools soft key, the interface switches to a list of
actions the user can perform on the current link. By pressing Read, for example,
he could view all the text on the page. (d) Pressing Cancel returns the user to nav-
igation mode. (e) By selecting Contact Us, he goes to Acuson’s contact informa-
tion page. The navigation item (bottom of screen) collects links that repeat
across many Web pages. (f) The user selects Acuson’s street address and presses
the Tools soft key to show a list of actions. If he selects directions, for example,
m-Links passes the street address to Yahoo Maps and returns the directions to
the user in text form. The About and Home options let him get more information
about the current link and return to the m-Links homepage.

(a) (b) (c)

(d) (e) (f)

(a)

(b)

October 2002 41

and next to it is an open folder. Once users select a
link, pressing the Tools soft key causes the inter-
face to switch to a list of actions they can perform
on that link. Pressing the cancel soft key returns
them to navigation mode.

As users continue deeper into the Web hierarchy,
m-Links introduces categories for collecting similar
links. One of these categories, navigation, is a repos-
itory for links that repeat across many pages on a
Web site, such as Home, Products, and About Us.
By collapsing repeated links, the navigation category
promotes new links as users dig through a Web site.

A link is the basic unit of manipulation, but
sometimes information the user wants may not be
explicitly linked in HTML. m-Links solves this by
scanning the text, using server-side data detectors
to create new links, and then including these links
in the list of links that can receive some user action.

The navigation interface exploits the user’s famil-
iarity with desktop file-selection dialogs. Satchel4

also uses this metaphor, but it primarily accesses
desktop documents; it does not operate on the
Web’s hypertext structure.

M-LINKS ARCHITECTURE
As Figure 3 shows, m-Links has three main parts:

the link engine, the service manager, and the user
interface generator.

Link engine
The link engine processes Web pages into a col-

lection-of-links data structure that is stored in the
link cache. A request to the navigation interface for
a Web page involves four steps.

Page parsing. In the first step, a parser—a variant
of the Digestor’s fast HTML parser—creates a
parse tree that consists of the HTML tags and text
on the Web page, as Figure 4 shows.

The parser also handles HTML frames, which
many Web pages use extensively to partition pages
into separate areas. Frameset and Frame tags
describe the frame structure in HTML. Each Frame
element points to a URL that the desktop browser
fetches to populate that frame. Whenever the m-
Links parser encounters a Frameset element, it
recursively calls itself to iterate through each Frame
element, inserting it into the tree and effectively flat-
tening the structure. The user sees the resulting links
as if they all came from the same URL, similar to
the way desktop browsers present a page.

We deliberately excluded support for HTML
scripting elements such as JavaScript or VBScript in
m-Links for two reasons. First, scripts are often
concerned with the rendering of the page. Second,

CH
TM

L

Us
er

 In
te

rfa
ce

 G
en

er
at

or

W
M

L
HD

M
L

HT
M

L

Devices

Fax

PrintStore

Fulfill

Summarize

World Wide Web

Web
document
services

HTML

Data

ReadNavigate

Send Mail

CH
TM

L

Us
er

 In
te

rfa
ce

 G
en

er
at

or

W
M

L
HD

M
L

HT
M

L

HTML

Data

ReadNavigate

Send Mail

ReadNavigate

Send Mail

CH
TM

L

Us
er

 In
te

rfa
ce

 G
en

er
at

or

W
M

L
HD

M
L

HT
M

L

HTML

Data

ReadNavigate

Send Mail

ReadNavigate

Send Mail

m-Links

CH
TM

L Us
er

 in
te

rfa
ce

 g
en

er
at

or

W
M

L
HD

M
L

HT
M

L
Service

manager

Link
engine

HTML
parser

Data
detectors

ReadNavigate

Send Mail

Basic services

ReadNavigate

Send Mail

Link
cache

Services
registry

…

Web
documents

…

Figure 3. The m-Links architecture. The three main processing components are the link engine, which creates the navigation interface, the
service manager, which creates the action interface, and the multidevice user interface generator, which converts the interfaces into forms
suitable for the requesting device and browser. Formats include HTML, Wireless Markup Language (WML), Handheld Device Markup Language
(HDML), and Compact HTML (CHTML).

DIV

B ATXTTXT

TXT TXT

<div>The cat sat on the mat</div>

“The” “sat on the”

“cat” “mat”

Figure 4. An HTML fragment represented in a parse tree.

42 Computer

because most search engines also ignore
scripting elements, site designers often pro-
vide an alternative static link.

Data detection. In the second step, m-Links
invokes server-side data detectors to identify
Web page elements that are not HTML
anchors or tags but that could receive some
user action. The detectors are functionally
similar to Apple’s data detectors,5 but they
run on the m-Links server, not on client
devices. The current m-Links version has two
detectors, one for phone numbers and one

for street addresses. We will add more detectors as
we identify other data types that users would like
to perform actions on.

Once the link engine parses the page, it passes the
parse tree to each data detector in turn. When a detec-
tor finds a match, it modifies the hierarchy to insert
a virtual link or data-detection element that spans the
text (and possibly other elements) containing the
data. The detector assigns each data-detection ele-
ment an Href property that contains target infor-
mation about the virtual link. For an address, this is
the street address as extracted. For a phone number
this is a WTAI, a URL identifier that, when followed,
lets a Web phone client dial the number.

Link naming. Once the data detectors have modi-
fied the parse tree, the link engine extracts links and
gives them appropriate display names by traversing
the tree looking for elements with an Href prop-
erty (such as <A> or <Area> elements) and data-
detected links. The link engine uses a link-naming
algorithm to determine concise but meaningful link
labels. The algorithm identifies a set of possible
labels for each link and assigns each a quality value
that represents how meaningful the label is likely to
be. The lowest quality label is the link’s URL.
Because page authors generally make titles mean-
ingful for book marking, the link engine assumes
that the highest quality label is the document’s title
at the link’s destination (for HTML pages). Other
sources of label names are a link’s anchor text, the
alt-text associated with an image link, and the link’s
relative URL path (excluding the host name and
so on).

When links to different documents have the same
name label, the algorithm discards the label, mov-
ing to the next highest quality label in the link’s
label set. The link engine checks the new labels
again to ensure that the new labels are unique, thus
guaranteeing a distinct label for each link that
appears in the final user interface.

Link categorization. Finally, in step four, after it
labels links, the link engine categorizes them.

Categorization essentially hides certain links from
the user, resulting in a less cluttered and more com-
pact interface. Categories can also help users
quickly focus or direct their navigation actions.
For example, a user who wants information about
a company location or address can probably access
it through a link in the navigation category.
Otherwise, she would need to hunt for the link
among all the other links on each page.

The current m-Links version supports two cate-
gories. The offsite category includes links that refer
to documents at a different Web site from the doc-
ument being processed. The navigation category
holds links that a site uses throughout to navigate
from anywhere to common index pages. The link
engine uses page-layout heuristics to identify nav-
igation links.2,3

Service manager
The service manager creates the action interface,

which presents a menu of tools users can invoke once
they have located a link with the navigation inter-
face. The service manager supports compound inter-
actions familiar to desktop users. For example,
selecting a data-detected address link and retrieving
directions in m-Links is analogous to a desktop user
copying a street address from one Web page and past-
ing it into the Yahoo Maps page to get directions.

When the user selects a link in the navigation
interface and chooses Tools, m-Links receives the
request and passes the link to the service manager.
The service manager constructs the action list by
evaluating a set of rules that each service specifies
against the link’s attributes (such as its MIME type)
and the characteristics of the user’s device (such as
what markup it supports). If the service manager
determines that the service satisfies all the service
rules, it adds the service to the action interface.
Consequently, a service developed to play audio
files will appear only when an audio file type is the
selected link.

m-Links supports basic system, user, and content
provider services—all of which are HTTP-accessi-
ble services that any site can host. The basic system
services, which the m-Links server hosts, include
reading HTML documents and sending URLs via
e-mail and phone to phone. User services are third-
party services that users would like to see for dif-
ferent kinds of links. Finally, content providers can
include a services.xml file in the root directory and
use this to include a set of customized content
provider services. For example, http://www.patents.
com could provide a service for overnight delivery
of high-quality patent documents.

m-Links
supports basic

HTTP-accessible
system, user, and
content provider
services that any

site can host.

October 2002 43

User interface generator
m-Links supports a variety of small devices with

different user interface markup languages, including
the Handheld Device Markup Language (HDML),
Compact HTML (CHTML), and Wireless Markup
Language (WML) for Web phones and HTML for
most palm-sized devices. The generator uses a com-
bination of screen template substitution and pro-
gram inheritance to produce the appropriate mark-
up interface for each device.

The user interface generator begins by identify-
ing the type of device making the request. It then
determines the appropriate type of response
markup and dispatches to a markup handler. The
handler, in turn, uses a screen template to help gen-
erate the content appropriate for the device. The
generator uses the same process for both the navi-
gation and action interfaces as well as a few asso-
ciated screens.

The generator also supports multiple languages
by using knowledge of the font encoding from the
retrieved Web page to encode link labels in the font
the author intended. Users can also specify the lan-
guage for m-Links menus, prompts, and messages
(currently English or Japanese); the generator sim-
ply chooses the interface screen template that
matches those preferences.

DEFINING AND EXTENDING SERVICES
To introduce user and content provider services

into m-Links, developers write a service specifica-
tion document in XML. Our approach is similar to
the Service Discovery Service6 in that third-party
developers can introduce new services and encode
how to use them. However, our service specifica-
tions are simpler because we have tailored them
to our application’s specific requirements.

Figure 5 shows an abbreviated service specifica-
tion for an e-mail service.

A service specification has three main sections:

• The rule section describes when m-Links
should present the service as an option to the
user, depending on the link’s attributes, the
user’s device type, and the user’s identity (e-
mail address).

• The execution section describes what URL m-
Links should execute when the user selects the
service. An HTTP request with parameters
that include the link to operate on and the
user’s e-mail address activates the service.

• The presentation section is in subsections for
different languages. Each language element pro-
vides short and long labels to present to the user,

as well as a longer description. A set of icon tags
provides links to graphical elements that m-
Links can also use when displaying services.

Developers can use one or more files for the ser-
vice specification as well as URL references that m-
Links resolves, validates, and substitutes. Thus,
adding services to m-Links is as simple as submit-
ting a URL with the service-specification file’s loca-
tion. m-Links then fetches and checks the
description for validity and adds it to the service
registry. The next time it generates a service menu
for a link, m-Links checks the service rules and
authorizes the service to appear in the menu.

We have experimented with several services,
which we broadly categorize into reading, sending,
printing, and mapping. Reading includes display-

<service-group ID=”email-group”>
<service ID=”email”>

<rule>
<accept match=”any”>

<client-accepts>.*text/html.*
</client-accepts>
<client-accepts>.*text/x-hdml.*
</client-accepts>

</accept>
<reject>

<source-mimetype>URL/.*
</source-mimetype>

</reject>
</rule>
<execution>

<execute>/mailto</execute>
</execution >
<presentation>

<language ID=”en”>
<service-name>email document
</service-name>
<short-name>Email Link</short-name>
<description>

Email a URL or the URL
and its contents to yourself
or a friend.

</description>
</language>
<icon output-format=”text/x-hdml”>

envelope1
</icon>

</presentation>
...
</service>
...
</service-group>

Figure 5. A sample service specification for an e-mail service. Web site owners
and users can use the service specification to introduce new services and encode
possible ways to use them.

44 Computer

ing content. Sending includes moving the link or
content to a user via e-mail or WAP (wireless appli-
cation protocol) alerts—a messaging capability
built into some Web phones that lets users send
URLs phone to phone. Printing includes getting
faxed or printed copies of content either at work
or while mobile. Mapping includes getting direc-
tions and printing out maps to an address.

While reading services let users display content,
such as PDF or HTML, we remain convinced that
reading is not the primary action people want to
perform on such small devices. However, we also
have observed that people want to check content
before proceeding with another action, such as fax-
ing, and this checking is one of the most common
reasons users employ reading services.

OBSERVATIONS
Our implementation of m-Links runs on a Java

servlet engine under Microsoft’s IIS Web server. We
ran the system in a six-month trial on a Pentium III
processor with 256 Mbytes of memory and a T1
network connection. We saw clearly in early proto-
typing the advantages of separating links from con-
tent, but we also saw the disadvantage of losing
context and information that normally surrounds
a link. This loss was especially pronounced on the
data-detected phone number links—Was this a fax
or a voice phone number?

To address this problem, we more tightly inte-
grated the HTML reading service to provide the
read-around feature, which Figure 6 illustrates. The
Tools menu includes an option to toggle between
the view of the links to a view of the text sur-
rounding the selected link.

Portals
Portals like Yahoo or Excite can have hundreds

of links, which means that finding an appropriate
link can take a long time. Accommodating pages

with this many links is an open problem, but we
believe structural transformation systems like
Digestor may perform better for these pages
because these systems naturally separate page areas
into distinct units for presentation. Consequently,
one possible solution is a hybrid approach, in which
the system collects links from separate page areas
into categories much like m-Links already does for
offsite and navigation links.

Browsing styles
m-Links best supports directed browsing, in

which the user follows links in an attempt to find
specific content. Casual browsing—following links
to see if there is anything useful on a site—does not
work as well. Indeed, we don’t see casual brows-
ing as compatible with very small devices anyway
because of their display restrictions. However, we
believe that directed browsing plus searching bet-
ter supports the goals of casual browsing. For
example, users can employ m-Links to perform
actions on links that a search engine returns or to
navigate into those sites.

A lthough users of very small Internet devices
will benefit when Web content is designed
specifically for their devices, it seems unlikely

that content providers will be able to customize all
new content, let alone existing content, in this way.
Indeed, Web access for these users will undoubtedly
become a more pressing concern as ever-smaller
Internet devices become more pervasive.

The current version of m-Links has only the off-
site and navigation link categories, but other cate-
gories are possible, such as those based on the link
destination’s MIME type (PDF, MPEG, or MP3
files) or layout characteristics (links separated into
frames, table rows, columns, and cells). Research is
required to determine when to introduce such cat-
egories and when doing so might be detrimental.

Research is also needed to streamline user input.
Most users of very small devices find inputting even
small amounts of text using a keypad unintuitive
and frustrating. We have explored integrating the
maturing technologies of speech recognition and
Voice Extensible Markup Language, which would
let m-Links seamlessly support mixed media input
to dialogs and forms, as well as alternative output
forms.

Despite these open issues, the modal interaction
model underlying m-Links provides a foundation
for using any Web content on very small devices—
a foundation that is flexible enough to evolve as
content types and user needs change. �

Figure 6. Tightly integrating a reading view with the navigation view. (a) The navi-
gation interface shows links on the FXPAL publications page. (b) Selecting the
Read action in the action interface (c) toggles the view to display the page text
surrounding the selected link. Selecting Menu and Navigate toggles back to the
navigation view in (a).

(a) (b) (c)

October 2002 45

References
1. T.W. Bickmore and B.N. Schilit, “Digestor: Device-

Independent Access to the World Wide Web,” Com-
puter Networks and ISDN Systems, vol. 29, nos.
8-13, 1997, pp. 1075-1082.

2. B.N. Schilit et al., “m-Links: An Infrastructure for
Very Small Internet Devices,” Proc. 7th Ann. Int’l
Conf. Mobile Computing and Networking (Mobi-
Com 01), ACM Press, New York, 2001, pp. 122-131.

3. J. Trevor et al., “From Desktop to Phonetop: A UI
for Web Interaction on Very Small Devices,” Proc.
14th Ann. ACM Symp. User Interfaces Software and
Technology (UIST 01), ACM Press, New York, 2001,
pp. 121-130.

4. M. Lamming et al., “Satchel: Providing Access to Any
Document, Any Time, Anywhere,” ACM Trans.
Computer-Human Interaction, vol. 7, no. 3, 2000,
pp. 322-352.

5. B. Nardi, J. Miller, and D. Wright, “Collaborative,
Programmable Intelligent Agents,” Comm. ACM,
Mar. 1998, pp. 96-104.

6. S. Czerwinski et al., “An Architecture for a Secure
Service Discovery Service,” Proc. 5th Ann. Int’l Conf.
Mobile Computing and Networking (MobiCom 99),
ACM Press, New York, 1999, pp. 24-35.

Bill N. Schilit is a principal researcher and codi-
rector of Intel Research Seattle, where his research
focuses on ubiquitous and proactive applications,
with an emphasis on information appliances and
context-aware computing. Schilit received a PhD

in computer science from Columbia University. He
is a member of the IEEE Computer Society and the
ACM. Contact him at bill.schilit@intel.com.

Jonathan Trevor is a senior research scientist at FX
Palo Alto Laboratory, where he focuses on ubiq-
uitous systems and computer-supported coopera-
tive work. His current research interests are in the
development of readily accessible groupware and
human-computer interaction applications across a
range of technologies and platforms. He received a
PhD in computer science from the University of
Lancaster. Contact him at trevor@fxpal.com.

David M. Hilbert is a research scientist at FX Palo
Alto Laboratory. His research interests are in the
design and evaluation of practical human-com-
puter interaction, computer-supported cooperative
work, and ubiquitous computing applications. He
received a PhD in information and computer sci-
ence from the University of California, Irvine. He
is a member of the IEEE and the ACM. Contact
him at hilbert@fxpal.com.

Tzu Khiau Koh is a senior member of the technical
staff at Xerox Singapore’s Software Centre, a divi-
sion of Fuji Xerox Asia Pacific. Her research inter-
ests are in personal and mobile computing, social
computing, and human-computer interaction. She
received an MSc in computer science from the
National University of Singapore. Contact her at
kohtk@xssc.sgp.xerox.com.

Get access
to individual IEEE Computer Society

documents online.

More than 67,000 articles and conference

papers available!

$9US per article for members

$19US for nonmembers

http://computer.org/publications/dlib

