
EDEM: Intelligent Agents for Collecting Usage Data
and Increasing User Involvement in Development

David M. Hilbert Jason E. Robbins David F. Redmiles

Dept. of Information and Computer Science
University of California, Irvine

Irvine, California, 92697-3425 USA
+1-714-824-3100

{dhilbert,jrobbins,redmiles}@ics.uci.edu

ABSTRACT
Expectation-Driven Event Monitoring (EDEM) provides
developers with a platform for creating software agents to
collect usage data and increase user involvement in the
development of interactive systems. EDEM collects
information that is currently lost regarding actual usage of
applications to promote improved usability and a more
empirically grounded design process.

Keywords
Event monitoring, intelligent agents, expectation agents,
usability engineering, software engineering

INTRODUCTION
Software evolution is largely driven by issues arising during
use. Once a system has been deployed, problems invariably
arise that developers did not anticipate. When the
environment in which a system is deployed and/or its users
behave in unexpected ways, usability and performance may
be affected. This can, in some cases, lead to lost data and
productivity and even threats to safety and security.

Involving end users in the development of interactive
systems increases the likelihood those systems will be useful
and usable [1][5][6]. However, user involvement should not
end once initial requirements, design, and prototypes have
been completed. If developers could continue to watch end
users interacting with systems once they have been
deployed, they could learn a lot about users’ tasks and work
environments that would suggest improvements in system
design, on-line help, documentation, and training.
Unfortunately, this is not feasible in general.

Expectation-Driven Event Monitoring (EDEM) allows
developers to create automated software agents to monitor
applications as they are being used and report data back to
developers when environmental features or user behavior
violate developers’ expectations.

Currently, most usage data is lost. Information thatdoes get
back to developers is often communicated through slow,ad
hoc, and manual channels. EDEM helps automate the task of
collecting usage information, allowing developers to base

design decisions on empirical data.

APPROACH
Usability breakdowns occur when developers’ expectations
about system usage do not match users’ expectations.
Several benefits can be realized when these mismatches are
detected and resolved [3].

A usage expectation determines whether a given interaction
(e.g., a sequence of mouse clicks) is expected or unexpected.
For example, a developer may hold the usage expectation
that users will fill in forms from top to bottom with only
minor variation, while a user may hold the expectation that
independent sections may be filled out in any order.

Figure 1 shows a conceptual picture of expectations held by
two groups of stakeholders (developers and users) and
expectations encoded in the system being used. Each
lowercase “e” represents a tacit expectation held in the mind
of a person or in the code of a program. Developers get their
expectations from their knowledge of the requirements, past
experience in developing systems, domain knowledge, and
past experience in using applications themselves. Users get
their expectations from domain knowledge, past experience
using applications, and interactions with the system at hand.
The software system embodies implicit assumptions about
usage that are encoded in screen layout, key assignments,
program structure, and user interface libraries. Each
uppercase “E” represents an explicit expectation. Several
usability methods seek to make implicit expectations of
developers and users explicit (e.g., cognitive walk-throughs,
participatory design, and use cases). Expectations embedded
in the system can be made explicit though representations
that we discuss below. Many expectations will remain
implicit despite these methods. We can treat such
expectations as unknowns and attempt to detect mismatches

Figure 1. Usability expectations in the development process.

Developer User

System

E E E E E E E E

E E E E

 e
e e

e
e e

 e e e



by comparing observed usage against expectations thathave
been made explicit.

Once a mismatch between users’ and developers’
expectations is detected it can be resolved in one of two
ways. Developers can change their expectations about usage
to better match users’ expectations, thus refining the system
requirements and eventually making a more usable system.
For example, features that were expected to be used rarely,
but are used often in practice should be made easier to
access. Alternatively, users can adjust their expectations to
better match those of developers, thus learning how to use
the existing system more effectively. Learning that they are
not expected to type full URL’s in Netscape Navigator™ can
lead users to omit characters such as “http://”.

Detecting breakdowns or difference in expectations is useful,
but aligning expectations requires knowledge of the other
party’s expectations and specific differences. For developers
to learn about users’ expectations they need specific details
of actual usage, including context, history, timing, and
intent. For users to learn of developers’ expectations they
need clear documentation of the intended system operation
and rationale to be presented to them at the time of
breakdown. In either case, dialog between users and
developers can help clarify and expose expectations.

IMPLEMENTATION
We support detecting and resolving mismatches in
expectations (as described above) by allowing developers to
encapsulate usability expectations in the form of intelligent
agents that monitor graphical user interface events. These
expectation agents, or EA’s, continually monitor usage of the
application and perform various actions when encapsulated
expectations are violated (Figure 2).

Other authors have proposed event monitoring as a means
for collecting usability data, however, existing approaches
usually suffer from one or more of the following limitations:
(1) low-level semantics: events are captured and analyzed at
the window system level, or just slightly above [2], (2)
decontextualization: analysis is done post-hoc on raw event
traces – potentially relevant contextual cues are lost. (3)
“one-way” communication: data flows from users to

developers who must then infer meaning – no “dialogue” is
established to facilitate mutual understanding, (4)batch
orientation: hypothesis formation and analysis is performed
after large amounts of (potentially irrelevant) data have been
collected – no means for hypotheses to be analyzed and
action taken while users are engaged. (5)privacy issues:
arbitrary events are collected without any explicit constraints
on the purposes of collection – no way to provide users with
discretionary control over what information is collected and
what information is kept private.

EDEM addresses these issues and goes beyond existing
approaches in supporting user involvement in development.
Specifically, EDEM provides the following benefits: (1)a
multi-level event model: allowing agents to compare
usability expectations against actual usage at reasonable
levels of abstraction, (2)contextualization: taking action and
collecting information while users are engaged in using the
application, (3) two-way communication: helping initiate
dialog between users and developers when breakdowns
occur, and finally, (4)specializable monitoring and analysis:
promoting a shift from batch-oriented data collection and
analysis to hypotheses-guided collection and analysis.

Multi-Level Event Model
EDEM is based on a multi-level event model to allow event
monitoring to be raised to the level of expectations
(Figure 3). At the lowest level arephysical events, such as
pressing keys with one’s fingers or moving the mouse with
one’s hand.Input device events, such as key and mouse
interrupts, are generated by hardware in response to physical
events.Window system events associate input device events
with windows and widgets on the screen.

Window system events are the lowest level events that EA’s
can monitor. Events at this level include button presses, list
and menu selections, focus events in input fields, and
window movements and resizing. An EA could, for example,
perform input field validation when the “Submit” button is
pressed on a web-based input form.

Application level events are generated by the expectation-
driven event monitoring substrate based on computations
involving window system events and global window system

Figure 2. The EDEM development cycle.

Figure 3. A multi-level model of user events.

Goal/Problem-Related
(e.g. ordering new software)

Domain/Task-Related
(e.g. providing billing information)

Abstract Interaction Level
(e.g. providing values in input fields)

Application Level
(e.g. shifts in editing attention)

Window System Events
(e.g. shifts in input focus, key events)

Input Device Events
(e.g. hardware generated key or mouse interrupts)

Physical Events
(e.g. fingers pressing keys or hand moving mouse)



state. Events at this level are intended to indicate changes in
the application interface that correlate with salient shifts in
the users’ state of mind.

Consider a user editing a field at the top of a form, then
pressing tab repeatedly to edit a field at the bottom of the
form. In terms of window system events, input focus shifted
several times between the first and last fields. In terms of
application level events, the user’s editing attention shifted
directly from the top field to the bottom field. Until the user
starts actually editing another application component, the
monitoring substrate assumes the user’s editing attention has
not shifted.

Application level events are associated with application
components, groups of components, and application
windows. To infer that the user has shifted editing attention
away from a given component, group of components, or
window, the monitoring substrate must look for editing
events in components outside of that component, group of
components, or window. The event-monitoring substrate
performs the computations required to generate application-
level events so that agents can detect such events on
particular application components without monitoring all
components on the screen. Not only does this simplify
individual EA’s, but it also factors code that would be
common across agents and avoids redundant computation.

Abstract interaction events occur when recurring, idiomatic
patterns of user interface events (from the window system
and/or application levels) are recognized. For example, an
abstract interaction event may be generated when a user
provides a value by manipulating an application component.
If that component were an input field, this would mean the
field had been edited, was no longer being edited, and now
contains data. The patterns of lower level events that indicate
an abstract interaction event such as VALUE_PROVIDED
will differ from one type of application component to
another, and from one application domain to another. This is
why detection of abstract interaction events is not performed
directly by the event monitoring substrate. Abstract
interaction event EA’s can be defined to generate these
events when the lower level events indicating them have
occurred, so that other interested (or higher level) agents can
use them in their own event monitoring.

Domain/task-relatedandgoal/problem-related events are at
the highest levels. Unlike previous levels, these events
indicate progress in the user’s tasks and goals. Detecting
these events is straightforward when interfaces provide
explicit support for structuring tasks or indicating goals. For
example, Wizards in Microsoft Word™ lead users through a
sequence of steps in a predefined task. EA’s can easily
recognize the user’s progress by recognizing simple lower
level events, such as button presses on the “Next” button. In
other cases, task and goal related events might be detected by
EA’s working individually or in groups to recognize
combinations of lower level events. For example, the goal of
placing an order includes the task of providing customer
contact information. An expectation agent could recognize
the task-related event CONTACT_INFO_PROVIDED by
recognizing the VALUE_PROVIDED abstract interaction
events generated for every field in the contact information
section of the form. In order to allow EA’s to understand task

and goal related events within the context of a broader
process, the event monitoring substrate could be integrated
with process and workflow modeling tools.

Our multi-level event model provides a hierarchy of
abstraction not provided by traditional event monitoring
approaches. Figure 4 shows a simple wizard for filling out an
order form that has been connected to the event monitoring
substrate. Notice that while input focus has shifted from the
name field to the street field, the event monitoring substrate
is indicating that the user’s editing attention has not yet
(been confirmed to have) shifted.

Contextualization
Currently, users and developers bear full responsibly for
recognizing when breakdowns occur, determining the
reasons for the breakdown, and deciding how to recover.
Because EA’s operate within the context of use, they can
assist users and developers in making these determinations.

When a breakdown occurs, EA’s can provide developers with
important contextual information such as system state and
event history. They may also collect information from users
regarding the reasoning and incidents leading up to
breakdowns,while that information is still fresh in users’
minds. When breakdowns are due to errors in the code, EA’s
can help provide developers with much richer contextual
information for bug reporting purposes than has typically
been possible. EA’s can help make external bug reports as
useful as internally generated bug reports.

Another benefit of EA’s is that they can operate in real usage
contexts since they don’t noticeably affect user interface
operation. Also, since monitoring is unobtrusive, EA’s are
less likely than direct observation methods to distract users
or influence their behavior.

Two-Way Communication
When breakdowns occur, it may not be enough to simply
provide context. Dialogue between users and developers
may need to be established in order to evolve mutual
understanding. When an EA detects a breakdown, it can
prompt the user to communicate with developers (Figure 5).
The same facilities can also be used to volunteer comments
when EA’s fail to detect breakdowns experienced by the user.
Communication can be synchronous or asynchronous, via
voice, video, or electronic mail.

Figure 4. Monitoring of a simple order form wizard.



Once communication has been initiated, ongoing dialogue
between developers and users may continue outside the
scope of the agent-based system. The communication policy
appropriate will depend on the development situation. For
instance, a direct video link might work well in small-scale,
in-house development situations, while asynchronous
policies might be preferable in Web-based product
development. When users greatly outnumber developers,
information gathered from EA’s will need to be filtered
through information management mechanisms before being
presented to developers. Mediator roles [4] may need to be
established to manage communication between users and
developers.

Specializable Monitoring and Analysis
Expectation-driven event monitoring represents a shift from
traditional batch-oriented approaches to a more proactive,
hypothesis-guided approach. Instead of forming and
analyzing hypotheses after large amounts of (potentially
irrelevant) data have been collected, data collection can be
tuned based on a-priori hypotheses (or expectations) that are
analyzed while users are engaged. Our approach is
hypothesis-guided in that only data, and results of analyses,
that are relevant to specific hypotheses (expectations) are
reported.1

Specializablity makes monitoring tractable on a larger scale
than is possible with traditional approaches. It is scalable in
terms of the number of users that can be monitored because
it allows analysis to be computed on the client-side. This
means that computation can be distributed among potentially
thousands of processors, and only relevant data, or results of
analyses, need to be reported to developers. Thus, usability
information can be captured on a scale that is statistically
significant, observations can be categorized a-priori as well
as a-posteriori, and factor analysis is facilitated.

Specializable monitoring and analysis can thus contribute to
an empirically guided development process. Effort can be
focused on those changes that will benefit the greatest
number of users, or resolve the greatest number of non-
trivial breakdowns. Also, the impact of proposed changes
can be analyzed in terms of how well they “agree” with

1. EA’s can support traditional event monitoring in addition to the expecta-
tion-based approach we advocate here.

existing user expectations. For instance, before making a
change, a developer could deploy an agent to the current user
base to look for user expectations that would be violated by
introducing the change.

Since EA’s can be dynamically added or removed,
investment in EA’s can be made incrementally. There is no
need to delay deployment of a product until all EA’s are in
place. Even a single EA can yield some useful feedback.

SUMMARY AND CONCLUSIONS
In summary, we propose a conceptual model of how usage
expectations might be treated explicitly in the software
development process and describe a system that can help
automate the task of detecting and resolving breakdowns.
EDEM helps developers collect usage data in real usage
contexts, thus promoting an empirically guided development
process in which developers can base design changes on
actual usage information.

ACKNOWLEDGMENTS
The authors would like to thank A. Girgensohn, F. Shipman,
A. Lee, and A. Turner who worked on precursors to this
work and continue to provide insight and support. This work
is financially supported by the National Science Foundation,
grant number CCR-9624846, and by the Defense Advanced
Research Projects Agency, and Rome Laboratory, Air Force
Materiel Command, USAF, under agreement number
F30602-97-2-0021. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S. Government.
Approved for Public Release - Distribution Unlimited.

REFERENCES
1. Baecker, R. M., Grudin, J., Buxton, W. A. S., Greenberg

S., eds. (1995)Readings in Human-Computer Interac-
tion: Toward the Year 2000. Morgan Kaufmann Publish-
ers, Inc. San Francisco, CA, USA.

2. Chen, J. (1990) Providing Intrinsic Support for User
Interface Monitoring. InHuman-Computer Interaction -
INTERACT ‘90.

3. Girgensohn, A., Redmiles, D. F., and Shipman, F. M. III.
(1994) Agent-Based Support for Communication
between Developers and Users in Software Design. In
Proceedings of the Knowledge-Based Software Engineer-
ing Conference ‘94. Monterey, CA, USA.

4. Grudin, J. (1991) Interactive Systems: Bridging the Gaps
between Developers and Users.IEEE Computer. April,
1991.

5. Lewis, C. and Rieman, J. Getting to Know Users and
their Tasks. In Baecker, R. M., Grudin, J., Buxton, W. A.
S., Greenberg S., eds. (1995)Readings in Human-Com-
puter Interaction: Toward the Year 2000. Morgan Kauf-
mann Publishers, Inc. San Francisco, CA, USA.

6. Nielsen, J. (1993)Usability Engineering. Academic
Press, Inc., Cambridge, MA, 1993.

Figure 5. An expectation agent message dialog.


