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ABSTRACT
Empirical evaluation of software systems in actual usage
situations is critical in software engineering. Prototyping, beta
testing, and usability testing are widely used to refine system
requirements, detect anomalous or unexpected system and
user behavior, and to evaluate software usefulness and
usability. The World Wide Web enables cheap, rapid, and
large-scale distribution of software for evaluation purposes.
However, current techniques for collecting usage data have not
kept pace with the opportunities presented by Web-based
deployment. This paper presents an approach and prototype
system that makes large-scale collection of usage data over the
Internet a practical possibility. A general framework for
comparing software monitoring systems is presented and used
to compare the proposed approach to existing techniques.
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1  INTRODUCTION
The Internet and World-Wide-Web make it possible to rapidly
distribute prototypes and beta releases to large numbers of
users at low cost. In principle, the Internet could become a
large-scale test-bed for gathering data about application use
with actual users of the systems being tested. In practice,
however, this can be difficult due to the distribution of users,
the time and labor involved in collecting data, the lack of
scalable tools for automatic data collection, and the lack of
proper incentives to support high-quality voluntary data
collection on the part of users. As a consequence, most
usability evaluations are limited to small scale tests in the
usability lab, and feedback from beta testing is typically
reported manually by beta testers themselves. Since data are
reported manually, and because beta testers pay the price of
bug reporting while vendors receive most of the benefit, the

quality and quantity of data is limited. Typically only the most
obvious or show-stopping problems are identified.

Despite these challenges, large-scale, Internet-based collection
of usage data with prototype and beta releases has the potential
of providing useful empirical guidance for application
development. Data collection is also important beyond initial
prototype and beta evaluation stages. For example, data about
which application features are most frequently used in practice
can suggest which features to optimize as well as how to best
focus development and testing effort. Continued collection is
also necessary to detect when usage patterns shift, thereby
invalidating results of data collected in earlier stages. Ongoing
collection is necessary to provide empirical guidance in
subsequent application maintenance and enhancement.

We propose an approach to automatic usability data collection
that makes ongoing, large-scale use a practical possibility. The
specific contributions of our approach include: (a) treating
“usage expectations” explicitly in the development process to
improve design and focus data collection, (b) a flexible and
incrementally evolvable monitoring architecture that separates
evolution of monitoring code from evolution of application
code, and (c) event abstraction mechanisms embedded within
probes to provide distributed filtering and multiple levels of
abstraction in collected data. A prototype implementation has
been developed that monitors JavaTM applets and applications,
however, the underlying concepts may be applied to systems
developed in any language in which user interface
functionality is provided by an event-based windowing
system.

Like other forms of experimentation, usability testing involves
numerous, interrelated activities including hypothesis
formation, data collection, data analysis, and interpretation of
results. Each of these activities may be addressed using
multiple techniques. This paper focuses on a particular
technique, namely automatic usage monitoring, for a specific
activity, namely data collection, while acknowledging that no
single activity or technique is sufficient in isolation. We
address hypothesis formation to a certain degree, but refer
readers to existing techniques for analyzing collected data
[9][11][15][16][24][25]. Our approach compliments existing
techniques for hypothesis formation, data collection, analysis,
and interpretation.



We begin by discussing the state of the practice in application
usage monitoring. This is followed by discussion of a novel
approach for extending this technique to large-scale use on the
Internet and a usage scenario to illustrate its application. The
following section develops a general framework for
comparing software monitoring systems that is used to
compare the proposed approach with existing techniques.
Finally, the status of a working prototype implementation and
its evaluation are discussed, followed by related work and
conclusions.

2  APPLICATION USAGE MONITORING
Application usage monitoring is a technique for collecting
data about human-computer interactions for the purpose of
evaluating application usability. Often referred to as
“monitoring” or “logging” techniques in the HCI literature
[2][19], usage monitoring involves instrumenting applications
(or windowing systems) to log information about user
interactions while test subjects complete pre-specified tasks
with interactive applications. The data collected by these
means are often used in conjunction with other forms of data,
such as video and/or experimenters’ notes, to identify
potential flaws in user interface design. Analysis is often aided
by spreadsheets or other more specialized analysis tools, and
presented to developers potentially resulting in changes to the
system being studied.

Scalability is important in usage monitoring because it
impacts who can be monitored (small numbers of laboratory
subjects vs. large numbers of actual users), under what
circumstances (usability laboratory vs. natural working
conditions), and for what duration (short experiments vs.
ongoing evaluation). Collecting usability information on a
large scale, however, is challenging. Existing tools are not
designed for large-scale use. To begin with, many of them do
not appropriately separate instrumentation from application
code. As a result, independent evolution is not possible. In
order to modify the type, format, or amount of data that is
captured, the application must be modified and re-delivered to
all subjects.

To avoid modifying instrumentation that is intermingled with
code, or as a result of inserting probes directly into the
windowing system, the practice has been to collect as much
data as possible — at very low levels of abstraction — and to
defer processing and analysis until after data have been
collected. This presents a problem for Internet-scale use. The
volume of user interface events generated by a single user
engaged in a single session is extremely high. In the context of
the Internet, that volume must be multiplied by numerous
users, engaged in numerous sessions, at numerous distributed
sites. The network load that would be generated by
transmitting every mouse movement of even a small
percentage of the networked Microsoft WordTM users, for
example, would be staggering. Furthermore, experience from
testing in software engineering as well as HCI suggests that
data should be collected and analyzed at multiple levels of
abstraction [27].

3  EXPECTATION-DRIVEN EVENT MONITORING

3.1  Expectations in the Development Process
Before presenting our solution, we begin with a theoretical
discussion of expectations in the development process. This
discussion suggests a theoretically principled way of focusing
data collection and making large-scale usage monitoring
feasible.

When developers design systems, they have numerous
expectations about how users and the operational
environments in which those systems are embedded will
behave. We call these usage expectations [10]. When the
environment in which a system is deployed or its users behave
in unexpected ways, various problems may ensue. These
problems can lead to sub-optimal user and system
performance, and, in safety or security critical systems, to
more dire consequences.

Developers’ expectations are based on their knowledge of the
requirements, past experience in developing systems,
knowledge of the domain, knowledge of the specific tasks and
work environments of users, and past experience in using
applications themselves. Some of these expectations are
explicitly represented, for example, those that are specified as
requirements. Some are implicit, including assumptions about
usage that are encoded in screen layout, key assignments,
program structure, and user interface libraries.

For example, implicit in the layout of most data entry forms is
the expectation that users will complete them from top to
bottom, with only minor variation. In laying out menus and
toolbars, it is usually expected that frequently used or
important functions can be easily recognized and accessed,
and that functions placed on the toolbar will be more
frequently used than those deeply nested in menus. Such
expectations are typically not represented explicitly, and as a
result, frequently fail to be tested adequately.

Several benefits can be realized if mismatches between
developers’ expectations and actual usage can be detected and
resolved. Once a mismatch is detected, it may be corrected in
one of two ways. Developers may change their expectations
about usage to better match actual use, thus refining the
system requirements and eventually making a more usable
system. For example, features that were expected to be used
rarely, but are used often in practice can be made easier to
access. Alternatively, users can adjust their behavior to better
match developers’ expectations, thus learning how to use the
existing system more effectively. For instance, learning that
they are not expected to type full URL’s in Netscape
NavigatorTM can lead users to omit characters such as “http://”.

3.2  Expectation Agents
We propose an approach to application usage monitoring that
is based on making usage expectations explicit. These
expectations are encoded in the form of agents that monitor
application usage and perform various actions when
encapsulated expectations are violated. Figure 1 depicts a
development process in which developers (and/or usability
specialists) identify usability expectations to be checked as
applications are developed, create agents to monitor user



interactions, deploy agents to monitor application usage, and
receive feedback from agents regarding mismatches in
expected versus actual usage.

The particular action highlighted in Figure 1 and in this paper
in general involves agents reporting data back to developers.
However, agents can perform numerous actions including
notifying the user and/or developer of mismatches, reporting
system state and/or event history for debugging purposes,
providing guidance or suggestions to the user, or collecting
feedback directly from the user [13].

3.3  Usage Scenario
Our prototype expectation-driven event monitoring system
(EDEM) provides developers with tools for defining agents,
dynamic displays for visualizing the components and events of
the interface being monitored as well as agent activity, and an
agent runtime system that allows agents to be downloaded to
monitor user interactions on user computers, while reporting
data back to centralized or federated groups of developer
computers.

To see how EDEM can be used by developers to collect
valuable usage information, consider the following usage
scenario, which is adapted from a demonstration performed by
Lockheed Martin C2 Integration Systems within the context of
a large-scale, governmental logistics and transportation
information system.

A group of engineers are tasked with designing a web-based
user interface to allow end users access to a large store of
transportation-related information. The interface in this
scenario is modeled after an existing interface (originally
written in HTML and JavaScript) that allows users to request
information regarding Department of Defense cargo in transit
between points of embarkation and debarkation. For example,
an officer might use the interface to determine the current
location of munitions that he ordered for his troops in Bosnia.

This is an example of an interface that might be used
repeatedly by a number of users in completing their work. It is
important that interfaces supporting frequently performed
tasks (such as steps in a business process or workflow) are
well-suited to users’ tasks, and that users are aware of how to
most efficiently use them, since inefficiencies and mistakes
can add up over time.

After involving users in design, constructing use cases,
performing task analyses, doing cognitive walkthroughs, and
employing other user-centered design techniques, a prototype
implementation of the form is ready for deployment. Figure 2
shows the prototype interface.

The engineers in this scenario were particularly interested in
verifying the expectation that users would not frequently
change their “mode of travel” selection in the first section of
the form (e.g. “Air”, “Ocean”, etc.) after having made
subsequent selections, since the “mode of travel” selection
affects the choices that are available in subsequent sections.
Operating under the expectation that this would not be a
common source of problems, the engineers made the design
decision to simply reset all selections to their default values
whenever the “mode of travel” selection is reselected.

Figure 1. A development process augmented with agents for
collecting usability data.

Figure 2. A prototype cargo query interface.



Figure 3 depicts a simple agent editor that developers can use
to author agents without writing code. In Figure 3, (top) the
developer expresses interest in detecting when the user selects
the “Air” button in the “mode of travel” section and adds this
event to an agent (bottom) that “fires” whenever the user edits
any of the buttons in that section. This agent is then used in
conjunction with other agents to detect when the user changes
the mode of travel after having made subsequent selections.
These agents are then downloaded to users’ computers
(automatically upon application start-up) where they monitor
user interactions and report data back to developers when
expectations are violated by actual usage.

In this case, the engineers configured the agent to indicate to
users that it had detected a violation. Users were then given
the option (using EDEM facilities) to request more
information describing why the agent had fired, and to
respond via email with comments if they desired. The agent
then reported a log of all violations unobtrusively via email
each time the applet was exited. Collected data and user
responses were emailed to a help desk where they were
reviewed by support engineers and entered into a change
request tracking system. With the help of other systems, the
engineers were able to assist the help desk in providing a new
release of the applet to the user community based on the usage
information collected from the field.

It is tempting to think that this example has a clear design flaw
that, if corrected, would clearly obviate the need for an agent.
Namely, the application should automatically detect which
selections must be reselected and direct the user to reselect
only those values. To illustrate how this objection misses the
mark, let us assume that one of the users actually responds to
the agent with exactly this suggestion. After reviewing the
agent-collected feedback, the engineers consider the
suggestion, but unsure of whether to implement it (due to its
impact on the current design, implementation, and test plans),
decide to review the log of expectation violations. The log,
which documents over a month of use with over 100 users,
indicates that this problem has only occurred 5 times, and
always with the same user. As a result, the developers decide
to put the change request on hold.

The ability to base development and management decisions on
empirical data in this way is one of the key contributions of
this approach. Another important contribution is the explicit
treatment of usage expectations in the development process.
Treating usage expectations explicitly helps developers think
more clearly about the implications of design decisions.
Because expectations can be expressed in terms of user
interactions, they can be monitored automatically, thereby
allowing information to be gathered on a potentially large
scale. Finally, expectations provide a principled way of
focusing data collection so that data is only collected
surrounding “critical incidents” in which usability problems
have actually been detected.

4  EVENT MONITORING FRAMEWORK

In this section, we develop a general framework for comparing
monitoring systems to help distinguish our approach from
existing techniques. Our framework is related in some ways to
other frameworks that have been proposed for event-based
software integration [3] and internet-scale event observation
and notification [22]. However, our framework differs in its
focus on monitoring and data collection issues as opposed to
tool integration and wide-area messaging issues. Further
discussion of how our framework compares to previous
frameworks is presented in the “Related Work” section.

4.1  Activity Space v. Event Space

First of all, we distinguish between the phenomena occurring
within the system being monitored and the phenomena that is
made visible to the outside world by the monitoring system.
These may or may not be identical. For example, event
monitoring systems frequently emit higher level events based
on computations involving lower level activities occurring
within the system being monitored. In some cases, the word
“event” is used to refer to both the low level, transient system
activities being monitored (e.g. user interface events), and the
higher level, persistent information subsequently made visible
to the outside world. To avoid confusion, we distinguish
between objects and activities which reside in “activity
space”, and entities and events which reside in “event space”
(Figure 4).

Figure 3. A simple agent editor.



Activity space is comprised of the objects and activities of
interest in the system being monitored. Objects may come in
“active” forms (e.g. whole systems, subsystems, software
agents, software components, programming language
modules, and so forth) or “passive” forms (e.g. operating
system files and directories, database tables and rows, and so
forth). Activities of interest are typically manifested in terms
of observable state changes, message passing, method
invocations, procedure calls, events, and so forth. Objects and
activities of interest are typically transitory and often identified
by non-persistent, implementation-dependent identifiers in
activity space.

Event space is characterized by events and entities that
correspond to objects and activities in activity space. Entities
and events, however, have persistent names for use in event-
space. The mappings between objects in activity space and
entities in event space are sometimes invertible so that objects
can be queried or otherwise manipulated from event space.
The mappings between activities in activity space and events
in event space are frequently not invertible since events may be
inferred or computed by compilation of information about
activities (with information loss).

4.2 Monitoring Roles

There are three major roles that are typically fulfilled in any
sophisticated monitoring approach (Figure 4):

• Probes to capture data about the system being monitored

• Distributors of captured data

• Consumers of data

These roles are logical in that the mechanisms instantiating
them may be loosely coupled, tightly coupled, or entirely
integrated.

Probes capture information about transitory objects and
activities in activity space and translate it into more persistent
information about entities and events for use in event space.
Distributors are responsible for distributing collected
information to consumers. Probes therefore bridge the gap
between activity and event spaces, while distributors and
consumers operate mainly in event-space.

4.3  Monitoring Activities
Probes, distributors, and consumers typically engage in the
following major activities (Figure 4):

• Observation

• Processing

• Notification

• Actions

Observation involves collecting basic information about
objects and activities in activity space. Observation can be
achieved through automatic synchronous detection techniques
or through polling. Observation is primarily performed by
probes for the purpose of making information available to
distributors and consumers.

Processing involves performing computations based on basic
information about objects and activities or entities and events.
Processing may involve pattern-matching, filtering, or
aggregation, potentially for the purpose of generating higher
level events. Processing is frequently performed by probes
and/or distributors for the purpose of filtering notifications as
well as providing event abstraction. Consumers also engage in
processing, and may ask probes and/or distributors to perform
processing on their behalf.

Notification involves letting other interested parties know
about observations or results of processing, frequently leading
to further observation, processing, notification, and actions.
Notification is primarily performed by distributors.

Actions are sometimes performed in response to observations,
processing, and notifications. Actions may involve
manipulating the system (e.g. to reconfigure it), interacting
with other systems (e.g. to store data), manipulating probes or
distributors (e.g. to register or cancel interest in events),
interacting with humans (e.g. to inform them of critical
conditions). Actions are primarily performed by consumers.
Consumers may also ask probes and/or distributors to perform
certain actions on their behalf.

4.4  Summary
In summary, monitoring can be understood in terms of three
major roles and four activities. The roles include: probes,
distributors, and consumers. The activities include:
observation, processing, notification, and actions. Approaches
to monitoring differ in terms of how they instantiate these
roles and activities, and to what extend activities can be
distributed amongst components fulfilling these roles in an
overall monitoring architecture. This has important
implications on reusability of monitoring assets, scalability of
the monitoring effort, and ultimately the types of evaluation
that can be performed.

Distributors

Consumers

System

Probes

Activity Space

Event Space

Figure 4. Probes translate information about objects and
activities in “activity space” into information about entities and
events for use by distributors and consumers in “event space”.
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4.5  Applying the Framework
In terms of the concepts developed in this framework,
traditional application usage monitoring can be characterized
in the following way. The objects of interest are user interface
components (such as text fields, buttons, and selection lists).
The activities of interest are user interface events (such as key
presses, mouse button presses, and list selections).
Observation is typically achieved by inserting probes directly
into application code or by tapping into the windowing
system’s event queue. Probes also act as distributors by
writing collected data directly to a file or other stream for later
consumption. Processing is typically performed by usability
analysts, who are the consumers, after all data have been
collected. This may ultimately result in actions involving
changes to the system being studied.

The main problems with traditional approaches are that probes
are intertwined with application code and processing is
deferred until after distribution. Our approach separates probe
code from application code and allows processing to occur
within probes so that filtering can be performed prior to
distribution.

5  IMPLEMENTATION

5.1  Agent Architecture
EDEM agents are currently represented as instances of a
simple JavaTM template class with parameters corresponding
to triggers, guards, and actions. Triggers are specified in terms
of user interface event patterns that are continually checked as
users interact with the application. Guards are specified in
terms of predicates involving user interface component state
variables that are only checked once an agent trigger has been
activated. Actions may include arbitrary code, but usually
involve pre-supplied actions such as generating higher level
events for further hierarchical event processing, interacting
with users to provide suggestions and/or collect feedback, and
finally reporting data back to developers.

Once agents have been defined, they are serialized and stored
in ASCII format in a file that is associated with a Universal
Resource Locator (URL) on a server machine.1 The URL is
passed as a command-line argument to the application of
interest. When the application of interest is run, the URL is
automatically downloaded and agents are instantiated on the
user’s computer. A standard HTTP server is used to field
requests for agent specifications and a standard email protocol
is used to send agent reports back to development computers.
An EDEM server is used to compile and store agent collected
data for later analysis. Agents may therefore be modified,
added, and deleted incrementally without affecting
deployment of the application that is being monitored. Figure
5 depicts a high-level view of the EDEM architecture.

This architecture provides a general solution for allowing
monitoring code to evolve flexibly in a large-scale, distributed
system, without requiring the systems being monitored to be
modified when monitoring needs change. Because our
approach allows agents to be deployed incrementally,

1.See [14] (forthcoming) for an example of a serialized agent.

investment in data collection is incremental, and the number
of agents can be kept down by focusing on only a limited
number of usability questions at any given time.

5.2  Integrating with EDEM

In our prototype JavaTM implementation, the top level ID of
each application window to be monitored as well as each user
interface event is passed to EDEM for processing. This is
accomplished through the use of two simple API calls. The

Figure 5. The EDEM architecture.
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first call is made only once when a new application window is
created. The second call is made each time the application
processes a user interface event. Typically, this only requires
two lines of source code to be inserted.1 There are subtleties
involved in automatically mapping the transient,
implementation-dependent IDs of user interface components
to persistent names for use in monitoring. We overcome this
by allowing the developer to provide a name, in code, for each
component that is expected to be prominent in monitoring.2

Once this has been accomplished, the component hierarchy of
the interface is detected automatically, and agents are defined
in terms of user interface components and events.

Once this has been accomplished, the component hierarchy of
the interface is detected automatically, and agents are defined
in terms of user interface components and events. EDEM is
implemented on top of an industry standard model for
components [26] that standardizes how arbitrary software
components makeevents, properties, andmethods available to
one another. Agent triggers are specified in terms of patterns of
component events; agent guards are specified in terms of
predicates involving component properties; agent actions may
involve invocation of component methods.

5.3  Filtering and Abstraction
While separating probes from application code is important in
allowing monitoring code and applications to evolve
independently, we do not enforce a separation between the
collection of data — typically preformed by probes — and
filtering and abstraction — typically performed by usability
analysts after data have been collected. This is because in
order to do Internet-scale collection, data needs to be filtered
close to the source to avoid undue network traffic. This does
not affect application deployment because our architecture
allows event processing to be modified incrementally as new
data needs arise without impacting application code, as
described above (Figure 5).

Filtering is accomplished by allowing event abstraction to
occur within probes. Instead of reporting every event that
occurs, agents detect significant patterns of lower level events
and generate higher level events for use in further processing.
Agents themselves conform to the component standard
described above and can therefore monitor one another in the
same way they monitor user interface components. It is
therefore possible to compose agents hierarchically to detect
patterns of events at increasing levels of abstraction. When an
agent detects a pre-specified pattern of lower level events, a
higher level event is automatically generated. Other agents can
then detect patterns of these higher level agent events just as
they can detect patterns of lower level user interface
component events. This allows a multi-level event model to be

1.This is not necessary on platforms where user interface components and
events can be observed as well asqueried from a separate process connected to
the windowing system. Most windowing systems do not support this function-
ality, however.

2.A non-robust mapping can be generated automatically. Requiring the devel-
oper to provide aliases for components is the most robust and maintainable way
to accomplish this mapping. The details as to why this is the case are beyond
the scope of this paper.

constructed in which higher level, abstract events are specified
in terms of combinations of lower level events. Only a selected
subset of these events is ultimately reported via email upon
application completion. A multi-level event model for
usability data collection has been implemented using this
approach and is described in [13].

The main contributions of these aspects of our approach
include the following. First, by pushing event abstraction
mechanisms into probes and closer to the source, event data
can be compiled before being sent across the network. Second,
by allowing higher level events to be specified in terms of
lower level events, data can be collected and analyzed at
multiple levels of abstraction.3

6  EVALUATION
It is important to evaluate to what extent the data collected by
agents is subsequently useful in design improvements. It is
also important to verify that the benefits of collecting usability
data outweigh the costs of authoring and maintaining agents.
To date our approach has been applied as part of a research
demonstration project conducted by Lockheed Martin C2
Integration Systems in the context of a large-scale logistics
and transportation information system based on the Global
Transportation Network (GTN).4 Please refer to the “Usage
Scenario” section for a description.

Our initial experience with the Lockheed demonstration
project suggests that the effort and expertise required to author
agents is not extensive, and that significant data can
nonetheless be captured. The most difficult part was indicating
to the demonstration development team how EDEM might be
used in this context. There were also some initial difficulties in
understanding how to specify event patterns. However, once
these initial obstacles were overcome, the documentation was
reported to have been “very helpful” and the user interface for
authoring agents “simple to use”. EDEM was quickly
integrated by Lockheed personal into the demonstration with
only minor code insertions, and agents were easily authored
and extended (by Lockheed personnel) to perform actions
involving coordination with other research systems. While
these initial results are encouraging, further evaluation with
quantifiable results is planned for the future.

7  CHALLENGES
We are also addressing a number of other challenges that must
be overcome before the potential of Internet-scale usability
data collection can be realized. These challenges range from
technical to social, including: agent representation, authoring,
and maintenance; data storage and analysis; integration of
expectations into the development process; privacy; and
finally, non-disruptive techniques for requesting user feedback
to augment automatically collected data.

3.Related work in distributed system monitoring and debugging is discussed
below.

4.The GTN is a system that gathers, integrates, and distributes transportation-
related information and acts as the central clearinghouse of transportation in-
formation for the Department of Defense. The system will eventually become
the U.S. Transportation Command’s primary command and control system and
a fully integrated component of the Department of Defense’s command and
control infrastructure.



With respect to agent representation and authoring, we are
investigating existing tools and techniques for constructing
state-based [30], rule-based [10], and mode-transition-based
[1] specifications. With regard to agent maintenance, we have
identified mitigating factors that minimize the impact of
maintenance issues [13]. With regard to data storage and
analysis, we are investigating existing techniques for
managing and processing temporal and sequential data [8][9].

With regard to integrating expectations into the development
process, we are investigating relationships between
expectations and usability requirements, cognitive
walkthroughs, use cases, and other artifacts that already exist
in the development process. With regard to privacy, users
should always be notified prior to use that monitoring will
take place. Since we do not collect arbitrary low-level data for
unspecified purposes, but rather, higher level information for
specified purposes, it is easier to justify collection, and users
can be given discretionary control over what is reported. For
example, upon exiting, users may be given the option to
review a description of the data that has been collected, an
explanation of the purposes for collection, as well as the
collected data itself before allowing data to be reported. Users
may also be given an option to deactivate monitoring
altogether if privacy or security concerns are significant. In
beta test situations, however, consent to allow data collection
may be included as one of the terms of the license agreement.
Finally, with regard to non-disruptive collection of user
feedback, we have investigated various scheduling and control
mechanisms to limit agent execution and filter agent requests
for user attention [21].

It should be noted that developers cannot anticipate all areas
where usability may break down, thus automatic detection of
expectation violations is only part of a complete usability
engineering solution. Our system has been designed so that
users can determine for themselves when undetected
breakdowns have occurred, and use the same reporting
mechanisms to send information back to developers including
program state, event history, as well as comments.
Nonetheless, this approach is intended to be used in
conjunction with existing usability engineering and evaluation
techniques. It is not intended as a replacement.

8  RELATED WORK

8.1  Application Usage Monitoring

As described above, current approaches to application usage
monitoring do not address issues of large-scale use.
Monitoring code is typically intermingled with application
code and too much low-level information is collected. The
strengths of current approaches involve techniques for
synchronizing event data with video data and observers’ notes
[15], and techniques for analyzing data once they have been
collected [9][11][15]. While EDEM is primarily intended for
use in situations where video equipment and human observers
are not present, integration with existing video
synchronization techniques and post-facto analysis tools is
planned as future work.

Some experimenters have already begun to explore remote
usability evaluation using the Internet [12]. However, data
filtering and reporting is only partially automated in that users
must be trained to identify “critical incidents” themselves, and
then press a “report” button which sends data about events
immediately preceding and following the user-identified
incidents back to experimenters. This is useful and is included
as a feature of EDEM, however, users are typically unaware of
when their actions violate developers’ expectations. EDEM’s
automatic mismatch detection is thus extremely important in
collecting data under general circumstances.

8.2  Software Process Event Monitoring
Numerous researchers have investigated techniques for
capturing software process event data for the purpose of:
analyzing and improving the software process [29], validating
the process with respect to a formal model [7], generating a
formal model based on process events [7], or applying metrics
to help guide the process (e.g., to automatically apply analysis
tools when changes to code increase the likelihood of
interface or control faults based on software metrics and
historical data) [23].

While differing substantially in intent, EDEM bears some
similarity to systems such as Amadeus [23] and YEAST [17]
that detect process events and take pre-specified actions in
response. However, many critical process events are difficult
to detect automatically, including communication,
coordination, and decision making events [29]. As a result,
process event data is somewhat less amenable to automatic
collection than is user interaction data. EDEM could,
however, be used as a tool for collecting process-related
events in so far as those events can be specified in terms of
user interaction events occurring within software tools
supporting the process in question.

Future work may involve the use of EDEM to do pattern
discovery in addition to pattern validation [7]. This involves
generating models to characterize patterns in event data as
opposed to simply detecting when particular patterns have
been satisfied or violated. This, however, would require either
more network band-width and server disk-space for data
transmission and storage, or alternatively, more sophisticated
processing within the agents (i.e. probes) themselves. In our
prototype implementation, we have attempted to be sensitive
to utilization of network band-width, server disk-space, as
well as the use of client processing resources. However, if
network band-width and server disk-space are not serious
issues in a given experimental situation, then pattern discovery
may be performed on servers with the help of separate
analysis tools once data have been collected.

8.3  Distributed System Monitoring and Debugging
Work in the area of distributed system debugging has also led
to approaches with characteristics similar to those found in
EDEM. Event-based behavioral abstraction (EBBA) is an
approach to distributed system debugging in which models of
expected program behaviors are created and compared to
actual behaviors exhibited by the program [4]. TAOS is a
specification-based testing system that applies a similar
approach [20]. EDEM can be viewed as a “debugging” or



“testing” tool for user interface designs that compares models
of expected use to actual use. However, because these
debugging and testing tools are primarily designed for use in
development situations as opposed to ongoing use on client
machines after deployment, they are significantly heavier-
weight than EDEM in terms of memory, storage, and
processing requirements.

Work in the area of distributed system monitoring has also
addressed some of the issues addressed by EDEM. Our
approach is similar to the Generalized Event Monitoring
(GEM) approach presented in [18] in that it distributes event
filtering and abstraction mechanisms as close as possible to the
sources of events, as opposed to performing filtering and
abstraction after distribution of event data.

8.4  Event Frameworks
While differing in focus, our monitoring framework is related
to other frameworks that have been proposed for event-based
software integration [3] and internet-scale event observation
and notification [22].

Barret et al. [3] provides an excellent semi-formal, object-
oriented framework for characterizing event-based tool
integration (EBI). The most notable difference between the
EBI framework and our model is that we explicitly
differentiate between the system of interest and probes. In the
EBI model, the tools being integrated are analogous to the
system being monitored in our model, and wrappers are
analogous to our probes. However, tools and wrappers are
treated as a single logical entity in their model
(“Participants”), and wrappers (i.e. probes in our model) are
thus not seriously considered as potential loci of flexible and
dynamically reconfigurable event processing and distribution
activities (“Message Transform Functions” and “Delivery
Constraints” in their terminology).

Rosenblum and Wolf [22] provides a good overview of several
interrelated design dimensions that must be considered in
designing any Internet-scale event observation and notification
facility. Their framework includes an object model, an event
model, a naming model, an observation model, a time model,
and a resource model. In terms of these dimensions, our
framework primarily focuses on issues involved in the
observation and resource models. However, in terms of the
roles and activities introduced in our framework, the
Rosenblum/Wolf framework focuses primarily on issues
associated with event notification and processing in the realm
of distributors and consumers, without addressing in detail
how these roles and activities interrelate with the remaining
roles (namely probes) and activities (namely observation and
actions) identified in our framework.

9  CONCLUSIONS
The main contributions of this paper are an approach (based on
usage expectations) and an architecture (based on agents that
perform distributed event filtering and abstraction) that
together make large-scale collection of usability data on the
Internet a practical possibility. By treating usage expectations
explicitly in the development process, we provide a principled
way of focusing data collection. By separating probes from
application code, we provide an architecture that allows event

monitoring to evolve flexibly and independently of
applications being monitored. Finally, by embedding event
abstraction mechanisms within our probes, we allow events to
be filtered in a scalable way, reducing network band-width
requirements, and allowing testing to address events at
multiple levels of abstraction.
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