
Separating the Wheat from the Chaff in Internet-Mediated
User Feedback

David M. Hilbert David F. Redmiles
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425 USA

+1 714 824 3100
{dhilbert,redmiles}@ics.uci.edu

ABSTRACT

The Internet enables cheap, rapid, and large-scale
distribution of software for evaluation purposes. It also
presents hitherto unprecedented, and currently underutilized,
opportunities for increasing user-developer communication
in software development. For instance, the Internet can be
used as a medium for collecting “direct” user feedback in the
form of subjective user reports, as well as “indirect”
feedback in the form of automatically-captured data about
application and user behavior. Both of these practices,
however, face a number of challenges that can be
summarized in the following statement: there is more
feedback to be collected — ranging in quality from useful to
useless — than there is time and resources to sift through and
act upon the meaningful parts. This paper describes an
Internet-based approach for capturing user feedback — both
“direct” and “indirect” — that attempts to address this
problem by focusing feedback collection based on the notion
of “usage expectations” in the development process.

Keywords

Internet-mediated user-developer communication, user
feedback, remote usability evaluation, expectation-driven
event monitoring

INTRODUCTION

The Internet and World-Wide-Web make it possible to
rapidly distribute prototypes and beta releases to large
numbers of users at low cost. In principle, the Internet could
become a large-scale test-bed for gathering “direct” user
feedback in the form of subjective user reports, and
“indirect” user feedback in the form of automatically-
captured data about application and user behavior. For
example, prototypes and beta releases are now commonly
used in conjunction with Internet-based groupware
technologies, such as news groups and e-mail lists, in order
to collect “direct” user feedback. Companies like Aqueduct
Software and Full Circle Software are now marketing

Internet-based mechanisms for automatically collecting
“indirect” user feedback, in the form of system and user
performance data, in addition to subjective user reports.
However, in practice, each of these approaches faces critical
challenges that make it difficult to separate important
feedback from unimportant feedback.

DIRECT FEEDBACK

Direct feedback is information that is gathered directly from
users based on their subjective reports. Methods for
collecting direct feedback range from relatively free-form
discussion forums (e.g., news groups and email lists), to
user-identified “critical incidents” [3], to questionnaires and
interviews, to more ethnographically inspired techniques
involving joint observer-participant interpretation of
behavior in context. A key benefit of direct feedback is its
ability to capture aspects of users’ needs, desires, thought
processes, and subjective experiences that are difficult to
obtain using the indirect approaches described below.

When the Internet is used as a means for collecting this sort
of feedback, however, there are a number of challenges that
arise. Some of these challenges become clear when
considering the case of beta testers who take it upon
themselves to report usability issues in addition to software
bugs.

First, the incentive structure for providing such feedback is
typically unfavorable to users. Many problems go unreported
because users are more interested in getting their work done
than in paying the price of problem reporting while
developers receive most of the benefit. Typically only the
most obvious or unrecoverable errors are reported.

Second, there is often a paradoxical relationship between
users’ performance with respect to a particular application
and their subjective ratings of its usability. Numerous
usability professionals have observed this phenomenon.
Users who perform well in usability evaluations often report
problems with the interface even though these problems
apparently did not affect the user’s ability to complete tasks.
When asked for a justification, these users will typically say
something to the effect: ”Well, I had an easy time, but I think
other people would have been confused.” Sometimes these
users correctly anticipate problems encountered by other,
less seasoned, users, however, this sort of feedback is based

on speculation and frequently turns out to be unfounded. On
the other hand, users who encounter great difficulties using a
particular interface will report that the interface is well
designed and easy to use. When confronted with the
discrepancy between their subjective report and observed
behavior, these users will typically say something to the
effect: “People with more experience would probably have
had an easier time,” or “I always have more trouble than
average with this sort of thing.”1 As a result, potentially
important feedback from users having difficulty will fail to
be reported while potentially misleading or unfounded
feedback from users having no difficulties will be reported.

Nevertheless, beta tests do appear to offer good opportunities
for collecting useful usability information. Smilowitz and
colleagues showed that beta testers who were asked to record
usability problems as they arose in normal use identified
almost the same number of significant usability problems as
identified in more formal lab evaluations of the same
software [6]. (A later case study performed by Hartson and
associates, using a remote data collection technique, also
appeared to support these results [3]). However, while the
number of usability problems identified in the lab and beta
test conditions was roughly equal, the number of common
problems identified by both was rather small. In
summarizing their results, Smilowitz and colleagues offered
the following as one possible explanation:

Another reason for this finding may have to do with
the individual identifying the problems. In the lab
test two observers with experience with the software
identified and recorded the problems. In some cases,
the users were not aware they were incorrectly using
the tool or understanding how the tool worked. If the
same is true of the beta testers, some severe problems
may have been missed because the testers were not
aware they were encountering a problem, and there-
fore did not record the problem [6].

Since users are not always aware of developers’ expectations
about appropriate usage, they can behave in ways that
blatantly violate developers’ expectations without being
aware of it. As a result, mismatches between developers’
expectations and actual usage may go undetected, resulting
in ongoing usability issues.

Another important limitation identified by Smilowitz and
colleagues is that the data reported in the beta test condition
lacked details regarding user performance and the frequency
of occurrences of problems.

INDIRECT FEEDBACK

In contrast,indirect feedback is information that is gathered
by observing users as they interact with applications.
Methods for collecting indirect feedback range from direct
observation, to audio and video recording and conferencing,
to automated software monitoring, to psychophysical event

1.These examples were taken from a discussion that appeared in a closed,
private discussion group, available only to practicing professionals in the
usability and human-computer interaction community.

monitoring (e.g., galvanic skin response and
electroencephalograms). A key benefit of indirect feedback
is that it tends to capture detailed, “objective” information
about user and application behavior (e.g., counts, sequence,
and timing of actions) that are difficult to obtain using the
direct feedback techniques described above.

When the Internet is used as a means for collecting this sort
of feedback, however, there are a number of challenges that
arise. Some of these challenges become clear when
considering various approaches that have been proposed for
performing remote usability evaluations.

Some investigators are beginning to investigate techniques
based on audio and video conferencing and remote
“application sharing” technologies. Unfortunately, while
leveraging the Internet to overcome geographical barriers,
these techniques fail to exploit the enormous potential
afforded by the Internet for capturing user feedback on a
large scale. This is because a large amount of data is
generated per user, and because observers are typically
required to observe and interact with users on a one-on-one
basis.

An alternative to such techniques involves automatically
capturing information about application and user behavior. A
number of application instrumentation and event monitoring
techniques have been proposed for this purpose. However,
most of these approaches suffer from some combination of
the following problems: (1) Low signal-to-noise ratio: too
much data is collected, and it is difficult to separate the
useful data from the noise. (2) Missing context: information
critical in interpreting the meaning of user actions is often
missing from the event stream, making post-hoc analysis
uncertain and challenging at best. (3) Lack of appropriate
abstraction: events are captured and analyzed at the window
system level, or just slightly above, making it difficult to
analyze user behaviors at higher levels of abstraction. (4)
One-way communication: data flows from users to
developers who must make inferences about what is going
on. No “dialogue” is established to facilitate mutual
understanding. (5) Batch orientation: hypothesis formation
and analysis is performed after large amounts of (potentially
irrelevant) data have been collected. It is difficult to tailor
data collection based on hypotheses, or for hypotheses to be
analyzed and action taken while users are engaged.

A NOVEL APPROACH

This paper presents a semi-automated, Internet-mediated
approach to user feedback collection that attempts to address
these issues, making it possible to capture higher quality
feedback on a much larger scale than is currently possible.
This approach is based on the notion of monitoring “usage
expectations” as users interact with software applications.

Expectations in the Development Process

When developers design systems, they have numerous
expectations about how those systems will be used. We call
these usage expectations [1]. When developers’ expectations
don’t match actual usage, various problems may ensue that
affect the usability and ultimate utility of the application in
question.

Developers’ expectations are based on their knowledge of
the requirements, past experience in developing systems,
knowledge of the domain, knowledge of the specific tasks
and work environments of users, and past experience in
using applications themselves. Some of these expectations
are explicitly represented — for example, those specified in
requirements, use cases, or cognitive walkthroughs. Some
are implicit — including assumptions about usage that are
encoded in screen layout, key assignments, program
structure, and user interface libraries.

For instance, implicit in the layout of most data entry forms
is the expectation that users will complete them from top to
bottom, with only minor variation. Also, menu and toolbars
are typically laid out based on expectations about frequency
of use. Such expectations are typically not represented
explicitly, and as a result, fail to be tested adequately.

Detecting and resolving mismatches between developers’
expectations and actual usage is important in improving the
fit between application design and use. Once mismatches are
detected, they may be corrected in one of two ways.
Developers may change their expectations about usage to
better match actual use, thus refining system requirements
and eventually making a more usable system. For example,
features that were expected to be used rarely, but are used
often in practice can be made easier to access. Alternatively,
users can learn about developers’ expectations, thus learning
how to use the existing system more effectively. For
instance, learning that they are not expected to type full
URL’s in Netscape NavigatorTM can lead users to omit
characters such as “http:// ”.

Expectation Agents

We propose an approach to remote usability data collection
in which expectations are encoded in the form of software
agents, called expectation agents, that monitor usage and
perform various actions when encapsulated expectations are
violated. Figure 1 depicts a software development process in
which developers: identify usage expectations to be checked
as applications are developed, create agents to monitor user
interactions, deploy agents to run on users’ computers, and
receive feedback from agents regarding application usage,
and mismatches in expected versus actual use. When
mismatches are detected, agents can perform a number of
actions including notifying users and developers of the
mismatch, reporting contextual information as well as the
user interface events leading up to and following “critical
incidents”, providing guidance or suggestions to users by
explaining developers’ expectations, and collecting feedback
directly from users regarding mismatches.

Usage Scenario

Our prototype expectation-driven event monitoring system
(EDEM) provides developers with tools for authoring
agents, dynamic displays for visualizing the components and
events of the interface being monitored as well as agent
activity, and an agent runtime system that allows agents to be
downloaded to monitor user interactions on user computers,
while reporting data back to developer computers.

To see how EDEM might be used to collect valuable
feedback from users, consider the following scenario.1 A
group of engineers are tasked with designing a web-based
user interface to allow users access to a large store of
transportation-related information. The interface in this
example is modeled after an existing interface (originally
written in HTML and JavaScript) that allows users to request
information regarding Department of Defense cargo in
transit between points of embarkation and debarkation. For
example, an officer might use the interface to determine the
current location of munitions that he/she ordered for his/her
troops in Bosnia. This is an example of an interface that
might be used repeatedly by a number of users in completing
their work. It is important that interfaces supporting
frequently performed tasks (such as steps in a business
process or workflow) are well-suited to users’ tasks, and that
users are aware of how to most efficiently use them, since
inefficiencies and mistakes can add up over time

After involving users in design, constructing use cases,
performing task analyses, doing cognitive walkthroughs, and
employing other user-centered design techniques, a
prototype implementation of the form is ready for
deployment. Figure 2 shows the prototype interface. The
designers in this scenario were particularly interested in
verifying the expectation that users would not frequently
change their “mode of travel” selection in the first section of
the form (e.g. “Air”, “Ocean”, etc.) after having made
subsequent selections, since the “mode of travel” selection
affects the choices that are available in subsequent sections.
Operating under the expectation that this would not be a
common source of problems, the designers made the

1.This scenario is adapted from a demonstration performed by Lockheed
Martin C2 Integration Systems within the context of a large-scale, govern-
mental transportation information system based on the Global Transporta-
tion Network (GTN). The GTN is a system that gathers, integrates, and
distributes transportation-related information and acts as the central clear-
inghouse of transportation information for the U.S. Department of Defense.

Figure 1. A development process augmented with agents for
collecting usability data.

decision to simply reset all selections to their default values
whenever the “mode of travel” selection is reselected.

The designers were then able to use EDEM facilities to
create an agent that would detect whenever the user changed
the mode of travel selection after having made subsequent
selections. The agent was then downloaded (along with other
agents) to users’ computers — automatically upon
application start-up — where it monitored user interactions
and reported data back to developers when expectations were
violated by actual usage (See [4] for more details).

When agents detect potential problems, they can report
feedback to developers unobtrusively via e-mail, and may
also be used to initiate direct communication between users
and developers. In this case, the designers configured the
agent to indicate to users that it had detected a violation.
Users were then given the option to request more
information describing why the agent had fired and to
respond via e-mail with feedback if they desired. See Figure
3. The same facilities may also be invoked directly by users
to volunteer information regarding problems not detected by
agents. Direct and indirect user feedback was emailed to a
help desk where it was reviewed by support engineers and
entered into a change request tracking system. With the help

of other systems, the engineers were able to assist the help
desk in providing a new release of the interface to the user
community based on the usage information collected from
the field.

It is tempting to think that this example has a clear design
flaw that, if corrected, would clearly obviate the need for an
expectation agent. Namely, one might argue, the application
should automatically detect which selections must be
reselected and direct the user to reselect only those values.
To illustrate how this objection misses the mark, let us
assume that one of the users actually responds to the agent
with exactly this (direct) feedback. After reviewing the
agent-collected feedback, the engineers consider the
suggestion, but unsure of whether to implement it (due to its
impact on the design, implementation, and test plans), decide
to review the log of (indirect) feedback regarding expectation
violations. The log, which documents over a month of use
with over 100 users, indicates that this problem has only
occurred 5 times, and always with the same user. As a result,
the developers decide to put the change request on hold.

The ability to base design decisions on empirical data in this
way, and to evaluate the importance of user feedback with
respect to its likely impact on the user population at large,
are key contributions of this approach. Another important
contribution is the explicit treatment of usage expectations in
the development process. Treating usage expectations
explicitly helps developers think more clearly about the
implications of design decisions. Because expectations can
be expressed in terms of user interactions, they can be
monitored automatically, thereby allowing information to be
gathered on a potentially large scale. Finally, expectations
provide a principled way of focusing feedback collection so
that information is collected surrounding “critical incidents”
and direct feedback can be evaluated based on how often the
events leading up to them have occurred in practice.

Figure 2. A prototype cargo query interface.

Figure 3. An expectation agent message dialog.

Note that when direct communication between users and
developers is initiated, it may take several forms. It may be
synchronous or asynchronous, via voice, video, or electronic
mail. The appropriate communication policy will depend on
the development situation. For instance, synchronous
groupware technologies, e.g., Internet-based video
conferencing, might work well in small-scale, in-house
development situations, while asynchronous communication
policies might be preferable in larger-scale product
development situations. When users greatly outnumber
developers, information gathered from agents will need to be
filtered through information management mechanisms
before being presented to developers. Finally, mediator roles
[2] may need to be established to manage communication
between users and developers.

CONCLUSIONS

The main contributions of this work include an expectation-
driven approach to feedback collection and an agent-based
architecture that together make large-scale collection of user
feedback over the Internet a practical possibility. Initial
experience with the Global Transportation Network
demonstration project indicates that valuable feedback can
be captured with only modest investment on the part of
developers.

By treating usage expectations explicitly in the development
process, we provide a principled way of focusing feedback
collection. By encapsulating data collection code within
expectation agents, we allow data collection to evolve
flexibly without impacting the deployment of the
applications being monitored. Finally, by allowing
expectation agents to perform event abstraction (described in
more detail in [5]), we allow data to be filtered in a scalable
way, reducing network bandwidth requirements, and
allowing data collection to address events at multiple levels
of abstraction. This approach has the potential of improving
user-developer communication, increasing user involvement

in development, and allowing developers to capture useful
feedback in a scalable way. All of this could potentially be
performed on a large and ongoing basis over the Internet.

ACKNOWLEDGMENTS

The authors would like to thank J. Robbins, A. Girgensohn,
F. Shipman, A. Lee, and A. Turner who worked on
precursors to this work and continue to provide insight and
support. This work is financially supported by the National
Science Foundation, grant number CCR-9624846.

REFERENCES

1. A. Girgensohn, D.F. Redmiles, and F.M. Shipman III.
Agent-Based Support for Communication between
Developers and Users in Software Design. InProceed-
ings of the Knowledge-Based Software Engineering
Conference 1994.

2. J. Grudin. Interactive Systems: Bridging the Gaps
between Developers and Users.IEEE Computer. April,
1991.

3. H.R. Hartson, J.C. Castillo, J. Kelso, and W.C. Neale.
Remote Evaluation: The Network as an Extension of the
Usability Laboratory. InProceedings of CHI’96, 1996.

4. D.M. Hilbert and D.F. Redmiles. An Approach to Large-
Scale Collection of Application Usage Data Over the
Internet. InProceedings of the 20th International Con-
ference on Software Engineering 1998.

5. D.M. Hilbert and D.F. Redmiles. Agents for Collecting
Application Usage Data Over the Internet. InProceed-
ings of the Second International Conference on Autono-
mous Agents 1998.

6. E.D. Smilowitz, M. J. Darnell, A.E. Benson. Are we
overlooking some usability testing methods? A compari-
son of lab, beta, and forum tests.Behaviour and Infor-
mation Technology, Usability Laboratories Special Issue
(Ed.) J. Nielsen, Vol.13, No.1 & 2, 1994.

