Agents for Collecting Application Usage Data Over
the Internet

David M. Hilbert

David F Redmiles

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA
+1 714 824 3100

{dhilbert,redmiles}@ics.uci.edu

1. ABSTRACT

Empirical evaluation of software systems in
actual use is critical in software engineering.
Prototyping, beta testing, and usability testing
are widely employed to refine system require-
ments, to detect anomalous or unexpected sys-
tem and user behavior, and to evaluate software
usefulness and usability. The World Wide Web
enables cheap, rapid, and large-scale distribu-
tion of software for evaluation purposes. How-
ever, current techniques for collecting usage
data have not kept pace with the opportunities
presented by Web-based deployment. This
paper describes how software agents can be
used to collect information regarding applica-
tion usage, on a potentially large and ongoing
basis, over the Internet.

1.1 Keywords

data is limited. Fragmentary reporting leads to difficulty in
reproducing and analyzing problems, and typically only the
most obvious or unrecoverable errors are identified.

Despite these challenges, large-scale, Internet-based collection
of usage data with prototype and beta releases has the
potential of providing useful empirical guidance for
application development. Data collection is also important
beyond initial prototype and beta evaluation stages. For
example, data about which application features are most
frequently used in practice can suggest which features to
optimize as well as how to best focus development and testing
effort. Continued collection is necessary to detect when usage
patterns shift, thereby invalidating results of data collected in
earlier stages. Ongoing collection is necessary to provide
empirical guidance in subsequent application maintenance and
enhancement.

We propose an approach to automatic usage data collection
that makes ongoing, large-scale use a practical possibility. The
specific contributions of our approach include: (a) treating
“usage expectations” explicitly in the development process to
improve design and focus data collection, (b) an agent-based
monitoring architecture that decouples the evolution and

Internet-scale user interface monitoring, remote usabilityeployment of monitoring code from the evolution and
testing, expectation agents, expectatlon—drlven event monltorlrwapmyment of app"cation code, and (C) event abstraction

2. INTRODUCTION

mechanisms embedded within agents that provide distributed
filtering and multiple levels of abstraction in collected data.

The Internet and World-Wide-Web make it possible to rapidly

distribute prototypes and beta releases to large numbers lofthe following section, we describe the state of the practice
users at low cost. In principle, the Internet could be used asifa application usage monitoring and explain why current
large-scale test-bed for gathering data about application u$gchniques cannot be used on a large scale over the Internet.
with actual users of the systems being tested. In practichlext we describe how agents can be used to collect data on
however, this can be difficult due to the number of users, theehalf of developers over the Internet. Finally, we discuss the
time and labor involved in collecting data, the lack of scalabl@rchitecture and implementation of a research prototype,
tools for automatic data collection, and the lack of propefollowed by related work and conclusions.

incentives for high-quality, voluntary data collection on the

part of users. As a consequence, most usability evaluations ate APF_)LICATION U_SA_GE_ MONITQRING)
limited to small scale tests in the usability lab, and feedbacRPplication usage monitoring is a technique for collecting
from beta testing is typically gathered manually by beta testefiata about human-computer interactions for the purpose of
themselves. Since data are collected manually, and becai@&luating application usability. Often referred to as
beta testers pay the price of bug reporting while vendorgnonitoring” or “automatic logging” in the HCI literature

receive most of the benefit, both the quality and quantity d2l[20], usage monitoring involves instrumented applications
or windowing systems that log information about user

interactions while test subjects complete pre-specified tasks
with interactive applications. The data collected by these
means are often used in conjunction with video and

experimenters’ notes to identify potential flaws in user

interface design. Analysis is often aided by spreadsheets or
other more specialized analysis tools, and presented to
developers, potentially resulting in changes to the system
being studied.

Readers interested in further details regarding data analysi
may wish to consult other papers regarding existing
techniques [6][11][13][27][32]. This paper focuses (1) Developers design
specifically on data collection, since data collection impacts| spzearion ard

choice of subjects (e.g. laboratory subjects vs. actual users) erecze agents

study setting (e.g. usability labs with specially configured {K

(21 Ageres ore deploved to e o weers " computers

s they inferse?
w/ applicotice

‘Ly.' (#) Agents observe wasis

workstations vs. normal working conditions), and study

duration and size (e.g. short, small-scale experiments vs. on
going, large-scale evaluation). Unfortunately, existing

approaches are not intended for ongoing, large-scale use wit
actual users under normal working conditions.

One problem is that most current approaches do not
appropriately separate monitoring code from application code, ss) peyeispers % (4) Agenis

As a result, independent evolution is not possible. In order tQ refine she deteet mistetehes,
modify the type, format, or amount of data that is captured, theg sgplicezion collact dote cwd

application must be modified and re-delivered to all subjects, andfor ageise - user frechback

To avoid modifying instrumentation that is intermingled with (5 Agents report backto developers
code, or as a result of inserting probes directly into the to inform application evolution

windowing system, the practice has been to collect as mucth
data as possible — at very low levels of abstraction — and to Figure 1. A software development process augmented with
defer processing and analysis until after data have been agents for collecting usability data.

collected. This presents a problem for Internet-scale use. Th Lo .
volume of user interface events generated by a single usef " €x@mple, implicit in the layout of most data entry forms is
engaged in a single session is extremely high. in the context of '€ _€xpectation that users will complete them from top to
the Internet, that volume must be multiplied by numerous Ottom, with only minor variation. In laying out menus and
users, engaged in numerous sessions, at numerous distributégeloars, it is usually expected that frequently used or
sites. The network load that would be generated bylmportant functions can be easily recognized and accessed,

fransmitting every mouse movement of even a smalland that functions placed on the toolbar will be more
frequently used than those deeply nested in menus. Such

percentage of the networked Microsoft Wdtdusers, for p ; -
; ; expectations are typically not represented explicitly, and as a
example, would be staggering. Furthermore, experience from esult, frequently fail to be tested adequately.

testing in software engineering as well as HCI suggests that
data should be collected and analyzed at multiple levels ofDetecting and resolving mismatches between developers’

abstraction [31]. expectations and actual usage is important in improving
usability. Once mismatches are detected, they may be
4. AN EXPECTATION-DRIVEN APPROACH corrected in one of two ways. Developers may change their

We propose an approach to large-scale application usagexpectations about usage to better match actual use, thus
monitoring based on the notion of “usage expectations”. In therefining the system requirements and eventually making a
following subsections, we discuss the importance of usagemore usable system. For example, features that were expected
expectations in the development process, provide an overviewo be used rarely, but are used often in practice can be made
of our approach, and describe a simple usage scenario. easier to access. Alternatively, users can learn about
. . developers’ expectations, thus learning how to use the existin
4.1 Expectations in the Development Process s;ystemp more gffectively. For instanceg learning that they areg

When developers design systems, they have numerougot expected to type full URLs in Netscape Navigator can
expectations about how users, and the operationalead users to omit characters suchtagp®/ .

environments in which those systems are embedded, will

behave. We call thesasage expectation§7]. When the 4.2 Expectation Agents

environment in which a system is deployed or its users behavéxpectation-driven event monitoring (EDEM) is an agent-
in unexpected ways, various problems can ensue. Suclbased approach to application usage monitoring. in which
problems typically result in sub-optimal user and system expectations are encoded in the form of software agents, called
performance, and can, in safety- or security-critical systemsexpectation agentghat monitor usage and perform various
lead to much more serious consequences. actions when encapsulated expectations are violated. Figure 1
Developers’ expectations are based on their knowledge of th&l€PICtS & software development process in which developers
requirements, past experience in developing systems,a”d/or usability experts) identify usage expectations to be
knowledge of the domain, knowledge of the specific tasks andtnecked as applications are developed, create agents to

work environments of users, and past experience in usingnOMitor user interactions, deploy agents to run on users’
applications themselves. Some of these expectations argOMPUters, and receive feedback from agents regarding

explicitly represented — e.g., those that are specified adhiSmatches in expected versus actual usage.

requirements or in use cases. Some are implicit — includingThe particular action highlighted in Figure 1 and in this paper
assumptions about usage that are encoded in screen layouh general involves agents reporting data back to developers.
key assignments, program structure, and user interfaceHowever, agents can perform numerous actions including
libraries. notifying users and/or developers of mismatches, reporting

system state and/or event history to developers for debuggin([ET gy -——_—y—- = B3

purposes, providing guidance or suggestions to users, 0 “gZ Dptions
collecting feedback directly from users [9].

4.3 Usage Scenario Name [David F. Redmiles

EDEM provides developers with tools for defining agents, = Stest |
dynamic displays for visualizing the components and events of

the interface being monitored as well as agent activity, and ar City |'“""“' State | ZIP |

agent runtime system that allows agents to be downloaded t

monitor user interactions on user computers, while reporting Mo. af Phanes | Primaty Use |Personal =]
data back to centralized or federated groups of developel

CompUterS- Service Optionz... |

To see how EDEM helps developers collect valuable usage
data, consider the following usage scenario. A group of Figure 2. Customer information section of a hypothetical

developers are designing a form-based application to help phone service provisioning form.

customer representatives at a hypothetical phone company

take customer orders over the phone. See [7] for a MOr€zrrrym—r =

detailed scenario. The user interface of the phone service i widow

provisioning form must be well-suited to users’ tasks and Component et

users must be aware of how to most efficiently use the -re - | [

interface in order to maximize the number of orders that can Feinen :I (BT e

be taken in a given amount of time. FieoPor. (S e S

File->Close

After involving users in design, constructing use-cases, Fleo £t

~ Options

File *window

Enter ZIF field first

performing task analyses, doing cognitive walkthroughs, and __ oassiie faus Gedcdsaties
employing other user-centered design techniques, a prototyp; MmO Coporate Sence Ferm o= Erler AP fcd s

Hame EventPattern |AoiBor. ..

implementation of the provisioning form application is ready Stest i o T T add] 04
for deployment. Figure 2 shows the customer information Gy Fiok] T SR

section of the form. Developers are interested in verifying that o CondonPetienfe 8w =]
their expectations, particularly those relating to efficiency, are’ %= Condlions [valve equds " 2 (el sd | Del
actually met by users of the prototype. In particular, they are .

. K e - . X . ime Limil — Edt
interested in verifying that users complete input fields in the o e S
order expected, and that the ZIP field in the customer Repeatl e &l
information section is used to automatically complete the City Enabled? []

and State fields, as expected.

Figure 3 shows an agent editor that allows developers to Add | Deete | Deklerl
specify expectation agents without writing code. In Figure 3
(upper-left) the developer expresses interest in detecting when
the user begins editing the State field in the order form and
adds this event to an agent (lower-right) that will “fire”

whenever the user edits the City or State fields while the ZIP5' IMPLEMENTATION
field is empty. This agent then runs on users’ computersg 1 Expectation Agents

monitoring user interactions and reporting data back to : :
developers when expectations are violated by actual usageExpectauon agents are currently represented as instances of a

Collected data is stored in a database and standard plotting argi"'P/e Javé! class with attributes describing triggers, guards,
analysis tools are used to analyze resuilts. and actions. Triggers are specified in terms of user interface

event patterns that are continually checked as users interact
The main contribution of our approach, as it has thus far beerwith the application. Guards are predicates involving user
described, is our explicit treatment of usage expectations in thenterface component state variables that are only checked once
development process. Treating usage expectations explicithan agent trigger has been activated. Actions may include
helps developers think more clearly about the implications ofarbitrary code, but usually involve pre-supplied actions such as
design decisions. Because expectations can be expressed @renerating higher level events for further hierarchical event
terms of user interactions, they can be monitored processing, interacting with users to provide suggestions and/
automatically, thereby allowing information to be gathered on or collect feedback, and finally reporting data back to
a potentially large scale. Expectations provide a principleddevelopers.

way of focusing data collection so that data is only coIIectedA tri ified in t f t patt f th
surrounding “critical incidents” in which usability problems ¢ %en. rl%gers. are speciiied in terms ot event patierns of the
have actually occurred. In the following section we describe ollowing form

how our approach allows monitoring to evolve without « “AorBor... " (Disjunction)

affecting the deployment of applications being monitored, and, «p and B and ...
how agents provide distributed event filtering and abstraction. |

Figure 3. A simple agent editor.

" (Conjunction)
“Athen B then ... " (Sequence)

« “(Aand B) no intervening C " (Conjunction+Exclusion)
edem.kernel.Agent[

e “(Athen B) no intervening C " (Sequence+Exclusion) name="Enter ZIP field first”,
i ; i A eventPattern="A or B or ...”,
Where variables A, B, and C are filled in by specifying: SventsVeCtoI2,
« acomponent from the user interface plus an event (e.g. edem.kernel.EventRecord]
GOT EDIT'Ci (Field) which OCCFl)JrS when the (9 name="City(Field)”, type="component”, event="GOT_EDIT"],
g, City v . edem.kernel.EventRecord[
City(Field) component is edited, or ‘name="State(Field)", type=“component’, event="GOT_EDIT"],
 another agent and agent event (EIRED:AddressCom- Eggg:t:ggsj\t/t:é?;[? orBor..,
pleteq which occurs when théddressCompleted agent edem.kernel. ConditionRecord]
has fired) name="Zip(Field)", type=“component”, condition=edem.kernel.Condition|
g . . redicate="=",
Agent guards are specified in terms of condition patterns of Eeyzu\,muen,
the following form: value="",
negate="false]]],
« “AorBor.. " (Disjunction) timeLimit="",

action=edem.kernel.Action[

* “AandBand.. " (Conjunction) message="Enter ZIP before City/State. City/State can be completed automatically.”,
1 1 i ifvi . interruptUser="false”,
Where variables A and B are filled in by specifying: foedbankre
 acomponent from the user interface and some expression involv :gg;"t];lée_f "
ing its properties (e.gvalue = ":Zip(Field)), or logValues="false",
» another agent and some expression involving its properties summary="true”,
(e.g.,count > 100:ZipBeforeCityState) summaryCount="true’],

repeat="true”,
An optional time limit may also be specified to require that the| enabled="true’]
agent’s event pattern be satisfied within a specified interval
This simplified trigger and guard notation facilitates a form-
based authoring environment. Arbitrary patterns can be
specified by composing agents (as explained belgire 4
shows an ASCII representation of the agent specified in Figure 3In sum, expectation agents act as reconfigurable “probes” that
. . can be incrementally added, deleted, or modified to collect
5.2 Integrating with EDEM data about application usage as needed. This architecture
In our prototype Java implementation, the top level ID of eachprovides a general solution for allowing monitoring code to
application window to be monitored as well as each usereyolve flexibly in a large-scale, distributed system, without

interface event is passed to EDEM for processing. This isrequiring the 'systems being monitored to be modified when
accomplished through the use of two simple library calls. Themonitoring needs change.

first call is made only once when a new application window is

created. The second call is made each time the applicatio.3 Event Filtering and Abstraction

processes a user interface event. Typically, this only requiresyhile separating monitoring code from application code is
two lines of source code to be inserted. There are subtletiegmportant in allowing monitoring to evolve without impacting
involved in automatically mapping the transient, application deployment, we do not enforce a separation
implementation-dependent IDs of user interface componentspetween the collection of data (typically preformed by
to persistent names for use in monitoring. We overcome thisinstrumentation) and filtering and abstraction of the data
by allowing the developer to provide a name, in code, for each(typically performed manually after data have been collected).
component that is expected to be prominent in monitdring. This is because Internet-scaie use demands that data be filtered
Once this has been accomplished, the component hierarchy ajlose to the source to avoid undue network traffic. Placing
the interface is detected automatically, and agents are definefiltering in deployed applications in the form of agents does
in terms of user interface components and events. not affect application deployment because our architecture

. . ts to be modified dynamically as new data needs
Once agents have been defined, they are serialized and stor OWS agents . - .
in ASCII format in a file that is associated with a URL on a %Hse without impacting applications, as described above.

development computer. When the application of interest isFiltering is accomplished by allowing agents to perform event
run, the URL is automatically downloaded and agents areabstraction. Instead of reporting every event that occurs,
instantiated on the user’'s computer. A standard HTTP server isigents detect significant patterns of lower level events and
used to field requests for agent specifications and a standard Egenerate higher level events for use in further processing.
mail protocol is used to send agent reports back toAgents are implemented on top of an industry standard
development computers. An EDEM server is used to storecomponent model, the JavaBe%hspecification [30], that
agent data reports for later analysis. Agents may therefore bgtandardizes how arbitrary software components readsts
modified, added, and deleted incrementally without requiring properties and methods available to one another. Agent
modifications to the application being monitored. Figure 5 triggers are specified in terms of patterns of standard software
component events; agent guards are specified in terms of
1 A non-robust mapping can be generated automatically. Requiringpredicates involving component properties; agent actions may
the developer to provide aliases for components is the most robustvolve invocation of component methods. Because agents
and maintainable way to accomplish this mapping. However, thethemselves, like the components they monitor, conform to the
details as to why this is so are beyond the scope of this paper. JavaBeans specification, they can monitor one another in

" Figure 4. ASCII version of the agent specified in Figure 3.

shows a high-level view of the EDEM architecture.

Development Computer

Application

Ul Components

& Ul Events

Java Virtual Machine

Top Level Windo

EDEM
Active Agents

Agent Specs
saved w/ URL

Development Computer

Collected
Data

Agent
Specifications

EDEM Server HTTP Server
Agent Reports | Agent Specs
sent via E-mail loaded via URL

User Computer

Application

Ul Components| & Ul Events

Java Virtual Machine

Top Level Windo

EDEM
Active Agents

Figure 5. The EDEM architecture.

exactly the same way they monitor other components.

It is therefore possible to compose agents hierarchically to
detect patterns of events at increasing levels of abstraction;
When an agent detects a pre-specified pattern of lower leveP
events, a higher level event is automatically generated (theC
“FIRED” event) that can be detected by other agents. This
allows a multi-level model of events to be constructed in

approach and is described in [9]. Agent output is logged
during execution and sent back to development computers via
E-mail when the application of interest is exited.

The main contributions of this aspect of our approach include
the following. First, by allowing agents to perform event
abstraction close to the source, event data can be filtered
before being sent across the network. Second, by allowing
higher level events to be specified in terms of lower level
events, event data can be collected and analyzed at multiple
levels of abstraction.

6. EVALUATION

It is important to evaluate to what extent the data collected by
agents is subsequently useful in design improvements. It is
also important to verify that the benefits of collecting usage
data outweigh the costs of authoring and maintaining agents.
To date our approach has been applied as part of a research
demonstration project conducted by Lockheed Martin C2
Integration Systems, in the context of a large-scale logistics
and transportation information system based on the Global
Transportation Network (GTN‘)See [10] for a usage scenario
based on the GTN experience.

Our initial experience with the Lockheed demonstration
project suggests that the effort and expertise required to author
agents is not extensive, and that significant data can
nonetheless be captured. The most difficult part was indicating
to the development team how EDEM might be used in this
context. There were also some initial difficulties in
understanding how to specify event patterns. However, once
these initial obstacles were overcome, the documentation was
reported to have been “very helpful” and the user interface for
authoring agents “simple to use”. EDEM was quickly
integrated by Lockheed personal into the demonstration with
only minor code insertions, and agents were easily authored
and extended (by Lockheed personnel) to perform actions
involving coordination with other systems. While these initial
results are encouraging, further evaluation with quantifiable
results is planned for the future.

7. CHALLENGES

We are also addressing a number of challenges that must be
overcome before the potential of Internet-scale usage data
collection can be realized\gent maintenanceve have begun

to identify mitigating factors that minimize the impact of
maintenance concerns [#)ata storage and analysisve are
investigating existing techniques for managing and processing
temporal and sequential data [5][6], and plan to provide a
standard database interface for storage and plotting.
Integration of expectations into the development procgss:

are investigating relationships between expectations and
usability requirements, cognitive walkthroughs, use cases, and
other artifacts that already exist in the development process.
Privacy: since we do not collect arbitrary low-level data for
unspecified purposes, but rather, higher level information for
pecified purposes, it is easier to justify collection, and users
an be given discretionary control over what is repoNed-

Wh|Ch h|gher |eve|, abstract events are Specrned in terms ofl The GTN is aSyStem that gathel’s, integrates, and distributes trans-

combinations of lower level events. A multi-level event model

portation-related information and acts as the central clearinghouse

for usage data collection has been implemented using this of transportation information for the U.S. Department of Defense.

disruptive collection of user feedback to augment
automatically collected datawe have investigated various Current usage monitoring:
scheduling and control mechanisms to limit agent execution
and filter agent requests for user attention [23].

8. RELATED WORK

8.1 Usage Monitoring eporti@»@ggﬁ
As described above, current approaches to application usagg

monitoring do not address issues of ongoing, large-scale use.
Figure 6 illustrates the contrast between our agent-based
approach and existing techniques.

Programmed Human
Instrumentation Analyst

Expectation-driven event monitoring:

Expectation Human
agents Analyst

iltering &) _
Abstractio Reporting Analysis

Updated Agents

The strengths of current approaches involve techniques for
synchronizing event data with video data and observers’ notes
[11][32], and post-facto analysis [6][11][32]. While EDEM is
primarily intended for use in situations where video
equipment and human observers are not present, integration
with existing video synchronization techniques as well as
post-facto analysis tools is planned as future work.

Some experimenters have begun to explore remote usability Figure 6. EDEM contrasted with current usage monitoring.

evaluation using the Internet [8]. However, data filtering and themselves. In our prototype implementation, we have
reporting is only partially automated in that users must beattempted to be sensitive to utilization of network band-width,
trained to identify “critical incidents” themselves, and then server disk-space, as well as the use of client processing
press a ‘“report” button which sends data about eventsresources. However, if network band-width and server disk-
immediately preceding and following the user-identified space are not serious issues in a given experimental situation,
incidents back to experimenters. This is useful and is includedhen pattern discovery may be performed on servers with the
as a feature of EDEM, however, users are often unaware ofielp of separate analysis tools once data have been collected.
when their actions violate developers’ expectations [28]. L . o

Expectation agents are thus indispensable in detecting criticaB.3 Distributed Debugging and Monitoring

incidents that are otherwise missed by users. Work in the area of distributed debugging has led to
o approaches with characteristics similar to those found in
8.2 Software Process Event Monitoring EDEM. Event-based behavioral abstraction (EBBA) is an

Numerous researchers have investigated techniques foapproach in which models of expected program behaviors are
capturing software process event data for the purpose ofcreated and compared to actual behaviors exhibited by the
analyzing and improving the software process [35], validating program [3]. TAOS is a specification-based testing system that
the process with respect to a formal model [4], generating aapplies a similar approach [22]. EDEM can be viewed as a
formal model based on process events [4], or applying metricsdebugging” or “testing” tool for user interfaces that compares

to help guide the process (e.g., to automatically apply analysisnodels of expected use to actual use. However, because these
tools when changes to code increase the likelihood of faultsdebugging and testing tools are primarily designed for use in
based on software metrics and historical data) [25]. development situations as opposed to ongoing use on users’

While differing substantially in intent, EDEM bears some computers after deployment, they require significantly more

similarity to systems such as Amadeus [25] and YEAST [15] memory, storage, and processing resources than EDEM.

that detect process events and take pre-specified actions iwork in the area of distributed system monitoring has also
response. However, many critical process events are difficuliaddressed some of the issues addressed by EDEM. Our
to detect automatically, including communication, approach is similar to the Generalized Event Monitoring
coordination, and decision making events [35]. As a result,(GEM) approach presented in [19] in that it distributes event
process event data is somewhat less amenable to automatfiitering and abstraction mechanisms as close as possible to
collection than is user interaction data. EDEM could, however,event sources, as opposed to performing filtering and
be used as a tool for detecting process-related events in so faibstraction after distribution of event data.

as those events are expressible in terms of user interactions

occurring within software tools supporting the process in 8.4 Agents

question. In contrast to interface agents that act primarily as “user
assistants” [17], expectation agents act primarily as “developer

g_uture work ”&33; mvglve i?e usel_gf t.EDEL"YI Elc_’h.do. paFern assistants” by monitoring application use, detecting when
iscovery in addition to pattern validation [4]. This INVOIVES ovironmental conditions and/or user behavior violate

generating models to characterize unanticipated patterns INevelopers’ expectations, and reporting data back to
event data as opposed to simply detecting when particmaﬁevelopers for evaluation p’urposes

patterns have been satisfied or violated. This, however, will
require either more network band-width and server disk-spaceg.4.1 Agent Representation

for data transmission and storage, or alternatively, moreThere are numerous techniques that might be used to represent
sophisticated processing within expectation agentsexpectation agents. State-based representations are well suited

for expressing expectations about sequences of eventBecause expectation agents are published in a well-known
regardless of the values of input fields or the state of thelocation and are only transported once per execution, their
system. For example, the expectation that users will fill in requirements for mobility are fairly simple. As a result, we
fields left to right and top to bottom. State-based agents relyhave avoided dependencies on special-purpose mobile agents
primarily on the order of events occurring in the user interface.platforms and opted instead for a standard and ubiquitous
By registering interest in particular events, transitions can betransport mechanism. Expectation agents are associated with
triggered when those events occur. Current technologies fotJRL's on development computers and downloaded to user
state-based systems are well developed and used in botbomputers via standard hypertext transfer protocol (HTTP).

requirements engineering and programming [34]. 8.4.3 Agent Interface

Rule-based representations [7] are well suited for expressing |arge portion of the research community in agents works on
expectations that hold over entire interactions regardless of théne issue of interfacing software agents to their human users.
order of events. For example, developers might expect users tgreat emphasis is given to anthropomorphism [16][17]. We
not fill in fields for both credit card payment and COD (cash pelieve this approach is critical for many classes of users and
on delivery). Rule-based agents rely primarily on the value ofcan greatly improve the chances of agents being adopted.
input fields and the state of the system. By registering intereshowever, in our current research, we have developed a more
in particular fields, these agents can be triggered when thosgteral, low level, and “precise” interface between the agents
fields change. Current technologies for rule-based systems argnd their primary users. We believe this approach to be
also well developed. appropriate because of the sophistication of the users, namely,

Mode-transition-based representations incorporate features ofoftware developers, and because of the need for precision in

both rule-based and state-based representations. The%efining expectations. Anthropomorphism may eventually be

represent expected behavior as tables of modes (i.e., statefjcorporated as a mechanism for interacting with end users of
and transitions which are guarded by conditions (i.e., rules).!€ applications being monitored, to request feedback, or to
For example, when an airline customer representative isProvide suggestions based on developers expectations [9].
searching for a group of seats on a single flight, they mightg CONCLUSIONS

be expected to enter another query whenever the previous§,
query yielded less available seats than was specified in th
“number of travelers” input field. Mode-transition-based
technologies have been well developed and are primarily
used in requirements engineering [1].

j‘ he main contributions of this paper include an expectation-
driven approach to event monitoring and an agent-based
architecture that together make large-scale collection of usage
data on the Internet a practical possibility. Initial experience
with the Global Transportation Network project indicates that
We have chosen what is basically a mode-transition-basedialuable usage data can be captured with only modest
representation, in which agents are specified in terms ofinvestment on the part of developers. By treating usage
triggers, guards, and actions. A similar approach was used irexpectations explicitly in the development process, we provide
early work on agents by Malone and colleagues [18]. In theira principled way of focusing data collection. By encapsulating
approach, agents are represented using a trigger, query, amdonitoring code within expectation agents, we allow
action. Queries are roughly equivalent to guards in ourmonitoring to evolve flexibly without impacting the
approach. Because we are interested in defining agents to adeployment of applications being monitored. Finally, by
upon specific patterns of user interface events, we use @mbedding event abstraction mechanisms within expectation
symbolic representation as opposed to a statisticalagents, we allow events to be filtered in a scalable way,
representation such as used by Sheth and Maes [26]. Statisticatducing network bandwidth requirements, and allowing data
techniques and other data mining techniques may eventuallgollection to address events at multiple levels of abstraction.
be used to do post-hoc analysis of already collected data for
the purpose of giscovering pa);terns as desgribed above. 10. ACKNOWLEDGEMENTS

- The authors would like to thank J. Robbins, A. Girgensohn, F.
8.4.2 Agent Mobility Shipman, A. Lee, and A. Turner, who worked on precursors to
Expectation agents move from development computers to usethis work and who continue to provide insight and support.
computers prior to execution. Stamos and Gifford [29]

introduced the concept of remote execution in which servers! Nis work is financially supported by the National Science

are viewed as programmable processors. EDEM can bd oundation, grant number CCR-9624846, and by the Defense
thought of as a programmable processor in which expectatior{*\dvanced Research Projects Agency, and Air Force Research
agents are the programs. Agents are authored and maintaindetoratory, Air Force Materiel Command, USAF, under
on development computers and transported to user computerddreement number F30602-97-2-0021. The U.S. Government
to execute remotely and report data back to developersiS authorized to reproduce and distribute reprints for
Several researchers have begun to look at sophisticateOvernmental purposes notwithstanding any copyright
techniques for achieving agent mobility [12][14][24]. Rus and annotation thereon. The views and conclusions contained
colleagues [24] describe an approach in which agents sensgerein are those of the authors and should not be interpreted as
network status and navigate adaptively based on reactivéecessarily representing the official policies or endorsements,
plans. There are also a number of commercially (and freely)€ither expressed or implied, of the Defense Advanced
available mobile agent platforms, e.g., [21], of which Research Projects Agency, Air Force Research Laboratory or

Telescript [33], introduced by General Magic, Inc. in 1994, the U.S. Government. Approved for Public Release -
was perhaps the first. Distribution Unlimited.

11. REFERENCES [18] T.W. Malone, K.Y. Lai, and C. Fry. Experiments with
[1] J.M. Atlee and J. Gannon. State-based Model checking of ~ Oval: A Radically Tailorable Tool for Cooperative Work.

event-driven system requiremerS8EE Transactions on In Proc. of CSCW'921992.

Software Engineeringlan. 1993. [19] M. Mansouri-Samani and M. Sloman. An Event Service
[2] R.M. Baecker, J. Grudin, W.A.S. Buxton, S. Greenberg, for Open Distributed Systems. Roc. of the Joint Inter-

eds.Readings in Human-Computer Interaction: Toward national Conference on Open Distributed Processing

the Year 2000Morgan Kaufmann, San Francisco, CA, (ICODP) and Distributed Platforms (ICDP)997.

USA, 1995. [20]J. NielsenUsability EngineeringAcademic Press, AP

[3] P.C.Bates. Debugging heterogeneous distributed systems ~ Professional, Cambridge, MA, USA, 1993.
using event-based models of behav@M Transactions [21] ObjectSpace, Inc. ObjectSpace Voyager and Agent Plat-

on Computer System¢ol. 13, No. 1, 1995. forms Comparison. ObjectSpace white paper, 1997.

[4] J.E. CookProcess Discovery and Validation through [22] D.J. Richardson. TAOS: Testing with Analysis and Oracle
Event-Data Analysi®Ph.D. Thesis, Technical Report CU- Support. InProc. of the International Symposium on Soft-
CS-817-96, University of Colorado, Sep. 1996. ware Testing and Analysit994.

[5] S. Fickas and M. Feather. Requirements Monitoring in ~ [23]J.E. Robbins, D.M. Hilbert, and D.F. Redmiles. Extend-
Dynamic Environments. IRroc. of IEEE International ing Design Environments to Software Architecture
Symposium on Requirements Engineeri@95. Design. To appear ifihe International Journal of Auto-

[6] C.Fisher and P. Sanderson. Exploratory sequential data ~ Mmated Software Engineering. Special Issue: The Best of
analysis: exploring continuous observational datar- KBSE'96
actions Vol.3, No. 2, 1996. [24] D. Rus, R. Gray, and D. Kotz. Transportable Agents. In

[7] A. Girgensohn, D.F. Redmiles, and F.M. Shipman lIl. Proc. of Autonomous Agen97.

Agent-Based Support for Communication between [25] R.W. Selby, A.A. Porter, D.C. Schmidt, and J. Berney.
Developers and Users in Software DesigrRrioc. of the Metric-Driven Analysis and Feedback Systems for
Knowledge-Based Software Engineering Conference, Enabling Empirically Guided Software Development. In
1994, Proc. of the International Conference on Software Engi-

[8] H.R.Hartson, J.C. Castillo, J. Kelso, W.C. Neale. Remote ~ Neering 1991.
Evaluation: The Network as an Extension of the Usability [26]B. Sheth and P. Maes. Evolving agents for personalized

Laboratory. InProc. of CHI'96 information filtering. InProc. of the Conference on Artifi-

[9] D.M. Hilbert, J.E. Robbins, and D.F. Redmiles. Support- cial Intelligence for Applications,993.
ing Ongoing User Involvement in Development via [27]A.C. Siochi and R.W. Ehrich. Computer Analysis of User
Expectation-Driven Event Monitoring. Technical Report Interfaces Based on Repetition in Transcripts of User Ses-
UCI-ICS-97-19, Department of Information and Com- sions,ACM Transactions on Information Systeivisl. 9,
puter Science, University of California, Irvine, May 1997. No. 4, 1991.

[10] D.M. Hilbert, D.F. Redmiles. An approach to large-scale [28] E.D. Smilowitz, M. J. Darnell, A.E. Benson. Are we over-
collection of application usage data over the Inteinet. looking some usability testing methods? A comparison of
Proceedings of International Conference on Software lab, beta, and forum tesBehaviour and Information
Engineering 1998. Technology, Usability Laboratories Special Is¢bd.) J.

[11] D.E. Hoiem, K.D. Sullivan. Designing and Using Inte- Nielsen, Vol.13, No.1&2, 1994.
grated Data Collection and Analysis Tools: Challenges [29]J. Stamos and D. Gifford. Remote ExecutionPAGM
and Considerations. In Jacob Nielsen &dability Labo- Transactions on Programming Languages and Systems,
ratories, Special Issue of Behaviour & Information Tech- \ol. 12, No. 4, 1990.

nology Vol. 13, No. 1 & 2, 1994, _ _ [30] Sun Microsystems. JavaBeAMsAPI Specification, Ver-
[12]D. Johansen, R. van Renesse, and F. Schneider. Operating "~ sjon 1.01. Jul. 1997. (URL: http://java.sun.com/beans/).

System Support for Mobile Agents. Roc. of the IEEE .
e ; 189 [31] R.N. Taylor and J. Coutaz. Workshop on Software Engi-
Workshop on Hot Topics in Operating Sys} > neering and Human-Computer Interaction: Joint Research

[13]J. Kay and R.C. Thomas. Studying Long-Term System Issues. IrProc. of the International Conference on Soft-
Use.Communications of the AGNol. 38 No. 7, 1995. ware Engineeringl994.

[14] K. Kotay and D. Kotz. Transportable AgentsPioc. of [32] P. Weiler. Software for the Usability Lab: A Sampling of
the Workshop on Intelligent Information Agerit394. Current Tools. IProc. of INTERCHI'93

[15] B. Krishnamurthy and D.S. Rosenblum. Yeast: A General [33] J.E. White. Telescript Technology: the Foundation for the
Purpose Event-Action SystefEE Transactions on Electronic Marketplace. General Magic white paper, Gen-
Software Engineering/ol. 21, No. 10, 1995. eral Magic, Inc., 1994.

[16]B. Laurel. Interface Agents: Metaphors with Character. In [34]J. Wing. A Specifier's Introduction to Formal Methods.
The Art of Human-Computer Interface Desigadison- IEEE ComputerSep. 1990.

Wesley, Reading, MA, USA, 1990.) _ [35]A.L. Wolf and D.S. Rosenblum. A Study in Software Pro-
[17]P. Maes. Agents that reduce work and information over- cess Data Capture and AnalysisPhoc. of the Interna-
load.Communications of the AGMol.37, No.7, 1994. tional Conference on Software Procek893.

