
1. ABSTRACT
Empirical evaluation of software systems in
actual use is critical in software engineering.
Prototyping, beta testing, and usability testing
are widely employed to refine system require-
ments, to detect anomalous or unexpected sys-
tem and user behavior, and to evaluate software
usefulness and usability. The World Wide Web
enables cheap, rapid, and large-scale distribu-
tion of software for evaluation purposes. How-
ever, current techniques for collecting usage
data have not kept pace with the opportunities
presented by Web-based deployment. This
paper describes how software agents can be
used to collect information regarding applica-
tion usage, on a potentially large and ongoing
basis, over the Internet.

1.1 Keywords
Internet-scale user interface monitoring, remote usability
testing, expectation agents, expectation-driven event monitoring

2. INTRODUCTION
The Internet and World-Wide-Web make it possible to rapidly
distribute prototypes and beta releases to large numbers of
users at low cost. In principle, the Internet could be used as a
large-scale test-bed for gathering data about application use
with actual users of the systems being tested. In practice,
however, this can be difficult due to the number of users, the
time and labor involved in collecting data, the lack of scalable
tools for automatic data collection, and the lack of proper
incentives for high-quality, voluntary data collection on the
part of users. As a consequence, most usability evaluations are
limited to small scale tests in the usability lab, and feedback
from beta testing is typically gathered manually by beta testers
themselves. Since data are collected manually, and because
beta testers pay the price of bug reporting while vendors
receive most of the benefit, both the quality and quantity of

data is limited. Fragmentary reporting leads to difficulty in
reproducing and analyzing problems, and typically only the
most obvious or unrecoverable errors are identified.

Despite these challenges, large-scale, Internet-based collection
of usage data with prototype and beta releases has the
potential of providing useful empirical guidance for
application development. Data collection is also important
beyond initial prototype and beta evaluation stages. For
example, data about which application features are most
frequently used in practice can suggest which features to
optimize as well as how to best focus development and testing
effort. Continued collection is necessary to detect when usage
patterns shift, thereby invalidating results of data collected in
earlier stages. Ongoing collection is necessary to provide
empirical guidance in subsequent application maintenance and
enhancement.

We propose an approach to automatic usage data collection
that makes ongoing, large-scale use a practical possibility. The
specific contributions of our approach include: (a) treating
“usage expectations” explicitly in the development process to
improve design and focus data collection, (b) an agent-based
monitoring architecture that decouples the evolution and
deployment of monitoring code from the evolution and
deployment of application code, and (c) event abstraction
mechanisms embedded within agents that provide distributed
filtering and multiple levels of abstraction in collected data.

In the following section, we describe the state of the practice
in application usage monitoring and explain why current
techniques cannot be used on a large scale over the Internet.
Next we describe how agents can be used to collect data on
behalf of developers over the Internet. Finally, we discuss the
architecture and implementation of a research prototype,
followed by related work and conclusions.

3. APPLICATION USAGE MONITORING
Application usage monitoring is a technique for collecting
data about human-computer interactions for the purpose of
evaluating application usability. Often referred to as
“monitoring” or “automatic logging” in the HCI literature
[2][20], usage monitoring involves instrumented applications
or windowing systems that log information about user
interactions while test subjects complete pre-specified tasks
with interactive applications. The data collected by these
means are often used in conjunction with video and
experimenters’ notes to identify potential flaws in user
interface design. Analysis is often aided by spreadsheets or
other more specialized analysis tools, and presented to
developers, potentially resulting in changes to the system
being studied.

Agents for Collecting Application Usage Data Over
the Internet

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

+1 714 824 3100
{dhilbert,redmiles}@ics.uci.edu

David M. Hilbert David F. Redmiles

Readers interested in further details regarding data analysis
may wish to consult other papers regarding existing
techniques [6][11][13][27][32]. This paper focuses
specifically on data collection, since data collection impacts
choice of subjects (e.g. laboratory subjects vs. actual users),
study setting (e.g. usability labs with specially configured
workstations vs. normal working conditions), and study
duration and size (e.g. short, small-scale experiments vs. on-
going, large-scale evaluation). Unfortunately, existing
approaches are not intended for ongoing, large-scale use with
actual users under normal working conditions.

One problem is that most current approaches do not
appropriately separate monitoring code from application code.
As a result, independent evolution is not possible. In order to
modify the type, format, or amount of data that is captured, the
application must be modified and re-delivered to all subjects.
To avoid modifying instrumentation that is intermingled with
code, or as a result of inserting probes directly into the
windowing system, the practice has been to collect as much
data as possible — at very low levels of abstraction — and to
defer processing and analysis until after data have been
collected. This presents a problem for Internet-scale use. The
volume of user interface events generated by a single user
engaged in a single session is extremely high. In the context of
the Internet, that volume must be multiplied by numerous
users, engaged in numerous sessions, at numerous distributed
sites. The network load that would be generated by
transmitting every mouse movement of even a small
percentage of the networked Microsoft WordTM users, for
example, would be staggering. Furthermore, experience from
testing in software engineering as well as HCI suggests that
data should be collected and analyzed at multiple levels of
abstraction [31].

4. AN EXPECTATION-DRIVEN APPROACH
We propose an approach to large-scale application usage
monitoring based on the notion of “usage expectations”. In the
following subsections, we discuss the importance of usage
expectations in the development process, provide an overview
of our approach, and describe a simple usage scenario.

4.1 Expectations in the Development Process
When developers design systems, they have numerous
expectations about how users, and the operational
environments in which those systems are embedded, will
behave. We call theseusage expectations [7]. When the
environment in which a system is deployed or its users behave
in unexpected ways, various problems can ensue. Such
problems typically result in sub-optimal user and system
performance, and can, in safety- or security-critical systems,
lead to much more serious consequences.

Developers’ expectations are based on their knowledge of the
requirements, past experience in developing systems,
knowledge of the domain, knowledge of the specific tasks and
work environments of users, and past experience in using
applications themselves. Some of these expectations are
explicitly represented — e.g., those that are specified as
requirements or in use cases. Some are implicit — including
assumptions about usage that are encoded in screen layout,
key assignments, program structure, and user interface
libraries.

For example, implicit in the layout of most data entry forms is
the expectation that users will complete them from top to
bottom, with only minor variation. In laying out menus and
toolbars, it is usually expected that frequently used or
important functions can be easily recognized and accessed,
and that functions placed on the toolbar will be more
frequently used than those deeply nested in menus. Such
expectations are typically not represented explicitly, and as a
result, frequently fail to be tested adequately.

Detecting and resolving mismatches between developers’
expectations and actual usage is important in improving
usability. Once mismatches are detected, they may be
corrected in one of two ways. Developers may change their
expectations about usage to better match actual use, thus
refining the system requirements and eventually making a
more usable system. For example, features that were expected
to be used rarely, but are used often in practice can be made
easier to access. Alternatively, users can learn about
developers’ expectations, thus learning how to use the existing
system more effectively. For instance, learning that they are
not expected to type full URL’s in Netscape Navigator can
lead users to omit characters such as “http:// ”.

4.2 Expectation Agents
Expectation-driven event monitoring (EDEM) is an agent-
based approach to application usage monitoring. in which
expectations are encoded in the form of software agents, called
expectation agents, that monitor usage and perform various
actions when encapsulated expectations are violated. Figure 1
depicts a software development process in which developers
(and/or usability experts) identify usage expectations to be
checked as applications are developed, create agents to
monitor user interactions, deploy agents to run on users’
computers, and receive feedback from agents regarding
mismatches in expected versus actual usage.

The particular action highlighted in Figure 1 and in this paper
in general involves agents reporting data back to developers.
However, agents can perform numerous actions including
notifying users and/or developers of mismatches, reporting

Figure 1. A software development process augmented with
agents for collecting usability data.

system state and/or event history to developers for debugging
purposes, providing guidance or suggestions to users, or
collecting feedback directly from users [9].

4.3 Usage Scenario
EDEM provides developers with tools for defining agents,
dynamic displays for visualizing the components and events of
the interface being monitored as well as agent activity, and an
agent runtime system that allows agents to be downloaded to
monitor user interactions on user computers, while reporting
data back to centralized or federated groups of developer
computers.

To see how EDEM helps developers collect valuable usage
data, consider the following usage scenario. A group of
developers are designing a form-based application to help
customer representatives at a hypothetical phone company
take customer orders over the phone. See [7] for a more
detailed scenario. The user interface of the phone service
provisioning form must be well-suited to users’ tasks and
users must be aware of how to most efficiently use the
interface in order to maximize the number of orders that can
be taken in a given amount of time.

After involving users in design, constructing use-cases,
performing task analyses, doing cognitive walkthroughs, and
employing other user-centered design techniques, a prototype
implementation of the provisioning form application is ready
for deployment. Figure 2 shows the customer information
section of the form. Developers are interested in verifying that
their expectations, particularly those relating to efficiency, are
actually met by users of the prototype. In particular, they are
interested in verifying that users complete input fields in the
order expected, and that the ZIP field in the customer
information section is used to automatically complete the City
and State fields, as expected.

Figure 3 shows an agent editor that allows developers to
specify expectation agents without writing code. In Figure 3
(upper-left) the developer expresses interest in detecting when
the user begins editing the State field in the order form and
adds this event to an agent (lower-right) that will “fire”
whenever the user edits the City or State fields while the ZIP
field is empty. This agent then runs on users’ computers
monitoring user interactions and reporting data back to
developers when expectations are violated by actual usage.
Collected data is stored in a database and standard plotting and
analysis tools are used to analyze results.

The main contribution of our approach, as it has thus far been
described, is our explicit treatment of usage expectations in the
development process. Treating usage expectations explicitly
helps developers think more clearly about the implications of
design decisions. Because expectations can be expressed in
terms of user interactions, they can be monitored
automatically, thereby allowing information to be gathered on
a potentially large scale. Expectations provide a principled
way of focusing data collection so that data is only collected
surrounding “critical incidents” in which usability problems
have actually occurred. In the following section we describe
how our approach allows monitoring to evolve without
affecting the deployment of applications being monitored, and
how agents provide distributed event filtering and abstraction.

5. IMPLEMENTATION

5.1 Expectation Agents
Expectation agents are currently represented as instances of a
simple JavaTM class with attributes describing triggers, guards,
and actions. Triggers are specified in terms of user interface
event patterns that are continually checked as users interact
with the application. Guards are predicates involving user
interface component state variables that are only checked once
an agent trigger has been activated. Actions may include
arbitrary code, but usually involve pre-supplied actions such as
generating higher level events for further hierarchical event
processing, interacting with users to provide suggestions and/
or collect feedback, and finally reporting data back to
developers.

Agent triggers are specified in terms of event patterns of the
following form:

• “A or B or ... ” (Disjunction)

• “A and B and ... ” (Conjunction)

• “A then B then ... ” (Sequence)

Figure 2. Customer information section of a hypothetical
phone service provisioning form.

Figure 3. A simple agent editor.

• “(A and B) no intervening C ” (Conjunction+Exclusion)

• “(A then B) no intervening C ” (Sequence+Exclusion)

Where variables A, B, and C are filled in by specifying:

• a component from the user interface plus an event (e.g.
GOT_EDIT:City(Field) which occurs when the
City(Field) component is edited, or

• another agent and agent event (e.g.FIRED:AddressCom-
pleted which occurs when theAddressCompleted agent
has fired)

Agent guards are specified in terms of condition patterns of
the following form:

• “A or B or ... ” (Disjunction)

• “A and B and ... ” (Conjunction)

Where variables A and B are filled in by specifying:

• a component from the user interface and some expression involv-
ing its properties (e.g., value = ‘’:Zip(Field)), or

• another agent and some expression involving its properties
(e.g.,count > 100:ZipBeforeCityState)

An optional time limit may also be specified to require that the
agent’s event pattern be satisfied within a specified interval.
This simplified trigger and guard notation facilitates a form-
based authoring environment. Arbitrary patterns can be
specified by composing agents (as explained below).Figure 4
shows an ASCII representation of the agent specified in Figure 3.

5.2 Integrating with EDEM
In our prototype Java implementation, the top level ID of each
application window to be monitored as well as each user
interface event is passed to EDEM for processing. This is
accomplished through the use of two simple library calls. The
first call is made only once when a new application window is
created. The second call is made each time the application
processes a user interface event. Typically, this only requires
two lines of source code to be inserted. There are subtleties
involved in automatically mapping the transient,
implementation-dependent IDs of user interface components
to persistent names for use in monitoring. We overcome this
by allowing the developer to provide a name, in code, for each
component that is expected to be prominent in monitoring.1

Once this has been accomplished, the component hierarchy of
the interface is detected automatically, and agents are defined
in terms of user interface components and events.

Once agents have been defined, they are serialized and stored
in ASCII format in a file that is associated with a URL on a
development computer. When the application of interest is
run, the URL is automatically downloaded and agents are
instantiated on the user’s computer. A standard HTTP server is
used to field requests for agent specifications and a standard E-
mail protocol is used to send agent reports back to
development computers. An EDEM server is used to store
agent data reports for later analysis. Agents may therefore be
modified, added, and deleted incrementally without requiring
modifications to the application being monitored. Figure 5

1 A non-robust mapping can be generated automatically. Requiring
the developer to provide aliases for components is the most robust
and maintainable way to accomplish this mapping. However, the
details as to why this is so are beyond the scope of this paper.

shows a high-level view of the EDEM architecture.

In sum, expectation agents act as reconfigurable “probes” that
can be incrementally added, deleted, or modified to collect
data about application usage as needed. This architecture
provides a general solution for allowing monitoring code to
evolve flexibly in a large-scale, distributed system, without
requiring the systems being monitored to be modified when
monitoring needs change.

5.3 Event Filtering and Abstraction
While separating monitoring code from application code is
important in allowing monitoring to evolve without impacting
application deployment, we do not enforce a separation
between the collection of data (typically preformed by
instrumentation) and filtering and abstraction of the data
(typically performed manually after data have been collected).
This is because Internet-scale use demands that data be filtered
close to the source to avoid undue network traffic. Placing
filtering in deployed applications in the form of agents does
not affect application deployment because our architecture
allows agents to be modified dynamically as new data needs
arise without impacting applications, as described above.

Filtering is accomplished by allowing agents to perform event
abstraction. Instead of reporting every event that occurs,
agents detect significant patterns of lower level events and
generate higher level events for use in further processing.
Agents are implemented on top of an industry standard
component model, the JavaBeansTM specification [30], that
standardizes how arbitrary software components makeevents,
properties, and methods available to one another. Agent
triggers are specified in terms of patterns of standard software
component events; agent guards are specified in terms of
predicates involving component properties; agent actions may
involve invocation of component methods. Because agents
themselves, like the components they monitor, conform to the
JavaBeans specification, they can monitor one another in

Figure 4. ASCII version of the agent specified in Figure 3.

edem.kernel.Agent[
name=“Enter ZIP field first”,
eventPattern=“A or B or ...”,
events=Vector[2,

edem.kernel.EventRecord[
name=“City(Field)”, type=“component”, event=“GOT_EDIT”],

edem.kernel.EventRecord[
name=“State(Field)”, type=“component”, event=“GOT_EDIT”]],

conditionPattern=“A or B or ...”,
conditions=Vector[1,

edem.kernel.ConditionRecord[
name=“Zip(Field)”, type=“component”, condition=edem.kernel.Condition[

predicate=“=”,
key=“value”,
value=“”,
negate=“false”]]],

timeLimit=“”,
action=edem.kernel.Action[

message=“Enter ZIP before City/State. City/State can be completed automatically.”,
interruptUser=“false”,
feedback=“true”,
log=“true”,
logTime=“false”,
logValues=“false”,
summary=“true”,
summaryCount=“true”],

repeat=“true”,
enabled=“true”]

exactly the same way they monitor other components.

It is therefore possible to compose agents hierarchically to
detect patterns of events at increasing levels of abstraction.
When an agent detects a pre-specified pattern of lower level
events, a higher level event is automatically generated (the
“FIRED” event) that can be detected by other agents. This
allows a multi-level model of events to be constructed in
which higher level, abstract events are specified in terms of
combinations of lower level events. A multi-level event model
for usage data collection has been implemented using this

approach and is described in [9]. Agent output is logged
during execution and sent back to development computers via
E-mail when the application of interest is exited.

The main contributions of this aspect of our approach include
the following. First, by allowing agents to perform event
abstraction close to the source, event data can be filtered
before being sent across the network. Second, by allowing
higher level events to be specified in terms of lower level
events, event data can be collected and analyzed at multiple
levels of abstraction.

6. EVALUATION
It is important to evaluate to what extent the data collected by
agents is subsequently useful in design improvements. It is
also important to verify that the benefits of collecting usage
data outweigh the costs of authoring and maintaining agents.
To date our approach has been applied as part of a research
demonstration project conducted by Lockheed Martin C2
Integration Systems, in the context of a large-scale logistics
and transportation information system based on the Global
Transportation Network (GTN).1 See [10] for a usage scenario
based on the GTN experience.

Our initial experience with the Lockheed demonstration
project suggests that the effort and expertise required to author
agents is not extensive, and that significant data can
nonetheless be captured. The most difficult part was indicating
to the development team how EDEM might be used in this
context. There were also some initial difficulties in
understanding how to specify event patterns. However, once
these initial obstacles were overcome, the documentation was
reported to have been “very helpful” and the user interface for
authoring agents “simple to use”. EDEM was quickly
integrated by Lockheed personal into the demonstration with
only minor code insertions, and agents were easily authored
and extended (by Lockheed personnel) to perform actions
involving coordination with other systems. While these initial
results are encouraging, further evaluation with quantifiable
results is planned for the future.

7. CHALLENGES
We are also addressing a number of challenges that must be
overcome before the potential of Internet-scale usage data
collection can be realized.Agent maintenance: we have begun
to identify mitigating factors that minimize the impact of
maintenance concerns [9].Data storage and analysis: we are
investigating existing techniques for managing and processing
temporal and sequential data [5][6], and plan to provide a
standard database interface for storage and plotting.
Integration of expectations into the development process: we
are investigating relationships between expectations and
usability requirements, cognitive walkthroughs, use cases, and
other artifacts that already exist in the development process.
Privacy: since we do not collect arbitrary low-level data for
unspecified purposes, but rather, higher level information for
specified purposes, it is easier to justify collection, and users
can be given discretionary control over what is reported.Non-

1 The GTN is a system that gathers, integrates, and distributes trans-
portation-related information and acts as the central clearinghouse
of transportation information for the U.S. Department of Defense.

Figure 5. The EDEM architecture.

Development Computer

Java Virtual Machine

Development Computer

Collected
Data

EDEM
Active Agents

Top Level Window
& UI Events

Property Queries

HTTP ServerEDEM Server

Java Virtual Machine

EDEM
Active Agents

Top Level Window
& UI Events

Property Queries

User Computer

Agent
Specifications

Agent Specs
saved w/ URL

Agent Specs
loaded via URL

Agent Reports
sent via E-mail

Application
UI Components

Application
UI Components

disruptive collection of user feedback to augment
automatically collected data:we have investigated various
scheduling and control mechanisms to limit agent execution
and filter agent requests for user attention [23].

8. RELATED WORK

8.1 Usage Monitoring
As described above, current approaches to application usage
monitoring do not address issues of ongoing, large-scale use.
Figure 6 illustrates the contrast between our agent-based
approach and existing techniques.

The strengths of current approaches involve techniques for
synchronizing event data with video data and observers’ notes
[11][32], and post-facto analysis [6][11][32]. While EDEM is
primarily intended for use in situations where video
equipment and human observers are not present, integration
with existing video synchronization techniques as well as
post-facto analysis tools is planned as future work.

Some experimenters have begun to explore remote usability
evaluation using the Internet [8]. However, data filtering and
reporting is only partially automated in that users must be
trained to identify “critical incidents” themselves, and then
press a “report” button which sends data about events
immediately preceding and following the user-identified
incidents back to experimenters. This is useful and is included
as a feature of EDEM, however, users are often unaware of
when their actions violate developers’ expectations [28].
Expectation agents are thus indispensable in detecting critical
incidents that are otherwise missed by users.

8.2 Software Process Event Monitoring
Numerous researchers have investigated techniques for
capturing software process event data for the purpose of:
analyzing and improving the software process [35], validating
the process with respect to a formal model [4], generating a
formal model based on process events [4], or applying metrics
to help guide the process (e.g., to automatically apply analysis
tools when changes to code increase the likelihood of faults
based on software metrics and historical data) [25].

While differing substantially in intent, EDEM bears some
similarity to systems such as Amadeus [25] and YEAST [15]
that detect process events and take pre-specified actions in
response. However, many critical process events are difficult
to detect automatically, including communication,
coordination, and decision making events [35]. As a result,
process event data is somewhat less amenable to automatic
collection than is user interaction data. EDEM could, however,
be used as a tool for detecting process-related events in so far
as those events are expressible in terms of user interactions
occurring within software tools supporting the process in
question.

Future work may involve the use of EDEM to do pattern
discovery in addition to pattern validation [4]. This involves
generating models to characterize unanticipated patterns in
event data as opposed to simply detecting when particular
patterns have been satisfied or violated. This, however, will
require either more network band-width and server disk-space
for data transmission and storage, or alternatively, more
sophisticated processing within expectation agents

themselves. In our prototype implementation, we have
attempted to be sensitive to utilization of network band-width,
server disk-space, as well as the use of client processing
resources. However, if network band-width and server disk-
space are not serious issues in a given experimental situation,
then pattern discovery may be performed on servers with the
help of separate analysis tools once data have been collected.

8.3 Distributed Debugging and Monitoring
Work in the area of distributed debugging has led to
approaches with characteristics similar to those found in
EDEM. Event-based behavioral abstraction (EBBA) is an
approach in which models of expected program behaviors are
created and compared to actual behaviors exhibited by the
program [3]. TAOS is a specification-based testing system that
applies a similar approach [22]. EDEM can be viewed as a
“debugging” or “testing” tool for user interfaces that compares
models of expected use to actual use. However, because these
debugging and testing tools are primarily designed for use in
development situations as opposed to ongoing use on users’
computers after deployment, they require significantly more
memory, storage, and processing resources than EDEM.

Work in the area of distributed system monitoring has also
addressed some of the issues addressed by EDEM. Our
approach is similar to the Generalized Event Monitoring
(GEM) approach presented in [19] in that it distributes event
filtering and abstraction mechanisms as close as possible to
event sources, as opposed to performing filtering and
abstraction after distribution of event data.

8.4 Agents
In contrast to interface agents that act primarily as “user
assistants” [17], expectation agents act primarily as “developer
assistants” by monitoring application use, detecting when
environmental conditions and/or user behavior violate
developers’ expectations, and reporting data back to
developers for evaluation purposes.

8.4.1 Agent Representation
There are numerous techniques that might be used to represent
expectation agents. State-based representations are well suited

Reporting AnalysisObservation Filtering &
Abstraction

Programmed
Instrumentation

Reporting AnalysisObservation Filtering &
Abstraction

Expectation
agents

Figure 6. EDEM contrasted with current usage monitoring.

Human
Analyst

Human
Analyst

Updated Agents

Current usage monitoring:

Expectation-driven event monitoring:

for expressing expectations about sequences of events
regardless of the values of input fields or the state of the
system. For example, the expectation that users will fill in
fields left to right and top to bottom. State-based agents rely
primarily on the order of events occurring in the user interface.
By registering interest in particular events, transitions can be
triggered when those events occur. Current technologies for
state-based systems are well developed and used in both
requirements engineering and programming [34].

Rule-based representations [7] are well suited for expressing
expectations that hold over entire interactions regardless of the
order of events. For example, developers might expect users to
not fill in fields for both credit card payment and COD (cash
on delivery). Rule-based agents rely primarily on the value of
input fields and the state of the system. By registering interest
in particular fields, these agents can be triggered when those
fields change. Current technologies for rule-based systems are
also well developed.

Mode-transition-based representations incorporate features of
both rule-based and state-based representations. They
represent expected behavior as tables of modes (i.e., states)
and transitions which are guarded by conditions (i.e., rules).
For example, when an airline customer representative is
searching for a group of seats on a single flight, they might
be expected to enter another query whenever the previous
query yielded less available seats than was specified in the
“number of travelers” input field. Mode-transition-based
technologies have been well developed and are primarily
used in requirements engineering [1].

We have chosen what is basically a mode-transition-based
representation, in which agents are specified in terms of
triggers, guards, and actions. A similar approach was used in
early work on agents by Malone and colleagues [18]. In their
approach, agents are represented using a trigger, query, and
action. Queries are roughly equivalent to guards in our
approach. Because we are interested in defining agents to act
upon specific patterns of user interface events, we use a
symbolic representation as opposed to a statistical
representation such as used by Sheth and Maes [26]. Statistical
techniques and other data mining techniques may eventually
be used to do post-hoc analysis of already collected data for
the purpose of discovering patterns as described above.

8.4.2 Agent Mobility
Expectation agents move from development computers to user
computers prior to execution. Stamos and Gifford [29]
introduced the concept of remote execution in which servers
are viewed as programmable processors. EDEM can be
thought of as a programmable processor in which expectation
agents are the programs. Agents are authored and maintained
on development computers and transported to user computers
to execute remotely and report data back to developers.
Several researchers have begun to look at sophisticated
techniques for achieving agent mobility [12][14][24]. Rus and
colleagues [24] describe an approach in which agents sense
network status and navigate adaptively based on reactive
plans. There are also a number of commercially (and freely)
available mobile agent platforms, e.g., [21], of which
Telescript [33], introduced by General Magic, Inc. in 1994,
was perhaps the first.

Because expectation agents are published in a well-known
location and are only transported once per execution, their
requirements for mobility are fairly simple. As a result, we
have avoided dependencies on special-purpose mobile agents
platforms and opted instead for a standard and ubiquitous
transport mechanism. Expectation agents are associated with
URL’s on development computers and downloaded to user
computers via standard hypertext transfer protocol (HTTP).

8.4.3 Agent Interface
A large portion of the research community in agents works on
the issue of interfacing software agents to their human users.
Great emphasis is given to anthropomorphism [16][17]. We
believe this approach is critical for many classes of users and
can greatly improve the chances of agents being adopted.
However, in our current research, we have developed a more
literal, low level, and “precise” interface between the agents
and their primary users. We believe this approach to be
appropriate because of the sophistication of the users, namely,
software developers, and because of the need for precision in
defining expectations. Anthropomorphism may eventually be
incorporated as a mechanism for interacting with end users of
the applications being monitored, to request feedback, or to
provide suggestions based on developers expectations [9].

9. CONCLUSIONS
The main contributions of this paper include an expectation-
driven approach to event monitoring and an agent-based
architecture that together make large-scale collection of usage
data on the Internet a practical possibility. Initial experience
with the Global Transportation Network project indicates that
valuable usage data can be captured with only modest
investment on the part of developers. By treating usage
expectations explicitly in the development process, we provide
a principled way of focusing data collection. By encapsulating
monitoring code within expectation agents, we allow
monitoring to evolve flexibly without impacting the
deployment of applications being monitored. Finally, by
embedding event abstraction mechanisms within expectation
agents, we allow events to be filtered in a scalable way,
reducing network bandwidth requirements, and allowing data
collection to address events at multiple levels of abstraction.

10. ACKNOWLEDGEMENTS
The authors would like to thank J. Robbins, A. Girgensohn, F.
Shipman, A. Lee, and A. Turner, who worked on precursors to
this work and who continue to provide insight and support.

This work is financially supported by the National Science
Foundation, grant number CCR-9624846, and by the Defense
Advanced Research Projects Agency, and Air Force Research
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-97-2-0021. The U.S. Government
is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced
Research Projects Agency, Air Force Research Laboratory or
the U.S. Government. Approved for Public Release -
Distribution Unlimited.

11. REFERENCES
[1] J.M. Atlee and J. Gannon. State-based Model checking of

event-driven system requirements.IEEE Transactions on
Software Engineering, Jan. 1993.

[2] R.M. Baecker, J. Grudin, W.A.S. Buxton, S. Greenberg,
eds.Readings in Human-Computer Interaction: Toward
the Year 2000. Morgan Kaufmann, San Francisco, CA,
USA, 1995.

[3] P.C. Bates. Debugging heterogeneous distributed systems
using event-based models of behavior.ACM Transactions
on Computer Systems, Vol. 13, No. 1, 1995.

[4] J.E. Cook.Process Discovery and Validation through
Event-Data Analysis. Ph.D. Thesis, Technical Report CU-
CS-817-96, University of Colorado, Sep. 1996.

[5] S. Fickas and M. Feather. Requirements Monitoring in
Dynamic Environments. InProc. of IEEE International
Symposium on Requirements Engineering, 1995.

[6] C. Fisher and P. Sanderson. Exploratory sequential data
analysis: exploring continuous observational data.Inter-
actions, Vol.3, No. 2, 1996.

[7] A. Girgensohn, D.F. Redmiles, and F.M. Shipman III.
Agent-Based Support for Communication between
Developers and Users in Software Design. InProc. of the
Knowledge-Based Software Engineering Conference,
1994.

[8] H.R. Hartson, J.C. Castillo, J. Kelso, W.C. Neale. Remote
Evaluation: The Network as an Extension of the Usability
Laboratory. InProc. of CHI’96.

[9] D.M. Hilbert, J.E. Robbins, and D.F. Redmiles. Support-
ing Ongoing User Involvement in Development via
Expectation-Driven Event Monitoring. Technical Report
UCI-ICS-97-19, Department of Information and Com-
puter Science, University of California, Irvine, May 1997.

[10] D.M. Hilbert, D.F. Redmiles. An approach to large-scale
collection of application usage data over the Internet.In
Proceedings of International Conference on Software
Engineering, 1998.

[11] D.E. Hoiem, K.D. Sullivan. Designing and Using Inte-
grated Data Collection and Analysis Tools: Challenges
and Considerations. In Jacob Nielsen ed.:Usability Labo-
ratories, Special Issue of Behaviour & Information Tech-
nology, Vol. 13, No. 1 & 2, 1994.

[12] D. Johansen, R. van Renesse, and F. Schneider. Operating
System Support for Mobile Agents. InProc. of the IEEE
Workshop on Hot Topics in Operating Systems, 1995.

[13] J. Kay and R.C. Thomas. Studying Long-Term System
Use.Communications of the ACM, Vol. 38 No. 7, 1995.

[14] K. Kotay and D. Kotz. Transportable Agents. InProc. of
the Workshop on Intelligent Information Agents,1994.

[15] B. Krishnamurthy and D.S. Rosenblum. Yeast: A General
Purpose Event-Action System.IEEE Transactions on
Software Engineering, Vol. 21, No. 10, 1995.

[16] B. Laurel. Interface Agents: Metaphors with Character. In
The Art of Human-Computer Interface Design, Addison-
Wesley, Reading, MA, USA, 1990.

[17] P. Maes. Agents that reduce work and information over-
load.Communications of the ACM, Vol.37, No.7, 1994.

[18] T.W. Malone, K.Y. Lai, and C. Fry. Experiments with
Oval: A Radically Tailorable Tool for Cooperative Work.
In Proc. of CSCW’92,1992.

[19] M. Mansouri-Samani and M. Sloman. An Event Service
for Open Distributed Systems. InProc. of the Joint Inter-
national Conference on Open Distributed Processing
(ICODP) and Distributed Platforms (ICDP),1997.

[20] J. Nielsen.Usability Engineering. Academic Press, AP
Professional, Cambridge, MA, USA, 1993.

[21] ObjectSpace, Inc. ObjectSpace Voyager and Agent Plat-
forms Comparison. ObjectSpace white paper, 1997.

[22] D.J. Richardson. TAOS: Testing with Analysis and Oracle
Support. InProc. of the International Symposium on Soft-
ware Testing and Analysis,1994.

[23] J.E. Robbins, D.M. Hilbert, and D.F. Redmiles. Extend-
ing Design Environments to Software Architecture
Design. To appear inThe International Journal of Auto-
mated Software Engineering. Special Issue: The Best of
KBSE'96.

[24] D. Rus, R. Gray, and D. Kotz. Transportable Agents. In
Proc. of Autonomous Agents,1997.

[25] R.W. Selby, A.A. Porter, D.C. Schmidt, and J. Berney.
Metric-Driven Analysis and Feedback Systems for
Enabling Empirically Guided Software Development. In
Proc. of the International Conference on Software Engi-
neering, 1991.

[26] B. Sheth and P. Maes. Evolving agents for personalized
information filtering. InProc. of the Conference on Artifi-
cial Intelligence for Applications,1993.

[27] A.C. Siochi and R.W. Ehrich. Computer Analysis of User
Interfaces Based on Repetition in Transcripts of User Ses-
sions,ACM Transactions on Information Systems. Vol. 9,
No. 4, 1991.

[28] E.D. Smilowitz, M. J. Darnell, A.E. Benson. Are we over-
looking some usability testing methods? A comparison of
lab, beta, and forum tests.Behaviour and Information
Technology, Usability Laboratories Special Issue (Ed.) J.
Nielsen, Vol.13, No.1&2, 1994.

[29] J. Stamos and D. Gifford. Remote Execution. InACM
Transactions on Programming Languages and Systems,
Vol. 12, No. 4, 1990.

[30] Sun Microsystems. JavaBeansTM API Specification, Ver-
sion 1.01. Jul. 1997. (URL: http://java.sun.com/beans/).

[31] R.N. Taylor and J. Coutaz. Workshop on Software Engi-
neering and Human-Computer Interaction: Joint Research
Issues. InProc. of the International Conference on Soft-
ware Engineering,1994.

[32] P. Weiler. Software for the Usability Lab: A Sampling of
Current Tools. InProc. of INTERCHI’93.

[33] J.E. White. Telescript Technology: the Foundation for the
Electronic Marketplace. General Magic white paper, Gen-
eral Magic, Inc., 1994.

[34] J. Wing. A Specifier’s Introduction to Formal Methods.
IEEE Computer, Sep. 1990.

[35] A.L. Wolf and D.S. Rosenblum. A Study in Software Pro-
cess Data Capture and Analysis. InProc. of the Interna-
tional Conference on Software Process,1993.

