
1

ABSTRACT
Software architectures are high-level design representations
of software systems that focus on composition of software
components and how those components interact. Software
architectures abstract the details of implementation and
allow the designer to focus on essential design decisions.
Regardless of notation, designers are faced with the task of
making good design decisions, which demands a wide range
of knowledge of the problem and solution domains. Argo is a
software architecture design environment that supports
designers by addressing several cognitive challenges of
design. In this paper we describe how Argo supports
decision making by automatically supplying knowledge that
is timely and relevant to decisions at hand.

Keywords
Domain-oriented design environments, software architec-
ture, human cognitive needs, design critics

INTRODUCTION
Software architecture is one promising approach to the
development of large software systems [6, 11, 12]. Software
architectures are high-level design representations of
software systems that focus on composition of software
components and how those components interact. Software
architects build systems by choosing and composing
software components. Ideally, off-the-shelf components are
reused, but in practice some components must be customized
or developed from scratch. This component-based approach
to development relies on notations that abstract the details of
implementation and allow the designer to focus on essential
design decisions.

An essential activity in designing software systems is
decision making. The resulting design must satisfy the
requirements and not violate constraints imposed by the
problem domain and implementation technologies. In
addition to hard constraints on the design, there are
numerous soft constraints, or rules of thumb, that address
qualities of the system that are desirable but not strictly
required. Often there are several desirable qualities that
conflict with each other or that cannot be precisely
measured.

In the domain of software architectures, the designer must
make myriad decisions, including the choice of software
components, configuration of individual components,
communication relationships between components, and
allocation of available resources to components.
Requirements are typically stated in terms of needed
functionality, limitations on resource use, and non-functional
requirements such as extensibility, portability, or scalability.

Software architects make design choices based on
knowledge of available software components and resources
and their characteristics. For example, in architecting a web
page editing tool, one spell checking component may run on
multiple platforms but be difficult to extend to handle HTML
syntax, while another might be fast and flexible but require a
run-time licensing fee, and developing a new spelling
component demands time, budget, and specific technical
skills.

PROBLEM
Typically no one designer has all the knowledge needed to
make a complete design. Instead, most complex systems are
designed by teams of stakeholders with each stakeholder
providing some of the needed knowledge. Even experienced
designers need knowledge support in complex domains or
when working with new design materials. The “thin spread
of application domain knowledge’’ has been identified as a
general problem in software development [1].

The knowledge that designers use to make design decisions
is diverse, heuristic, and tacit. Diverse knowledge is needed
to address the diversity of design issues in a complex system.
Design knowledge is often heuristic because qualities are
difficult to measure or the relationship between design
constructs and qualities is unclear. Because it is diverse and
heuristic, designers cannot articulate or catalog all the
knowledge they have, and it is impractical for tools to
assume they can supply all needed knowledge.

In addition to the need for knowledge, designers also have
difficulty applying the knowledge that is available to them.
The cognitive theory ofreflection-in-action [9, 10] states that
designers can best evaluate their designs while they are
engaged in making design decisions, not after. Availability
bias arises when multiple pieces of information influence a
decision, but only some of them are readily available, often
resulting in decisions based on incorrect assumptions that
must be reworked later [13].

To appear in Proc. 1998 International Confer-
ence on Inteligent User Interfaces, January
6-9, San Francisco, CA, USA

Software Architecture Critics in Argo

Jason E. Robbins David M. Hilbert David F. Redmiles

Dept. of Information and Computer Science
University of California, Irvine

Irvine, California, 92697-3425 USA
+1-714-824-7308

{jrobbins,dhilbert,redmiles}@ics.uci.edu



2

Two other cognitive challenges of design are described by the
theory of opportunistic design and the theory of
comprehension and problem solving. Opportunistic design
[4, 14] observes that designers do not follow prescribed design
processes, instead they choose what to do next as they work
through the design, based on perceived degree of difficulty and
priority. Comprehension and problem solving [5, 7] addresses
the way designers understand systems when engaged in
making design decisions. Designers often use multiple mental
models of the system, each one of which addresses a subset of
design issues. Elsewhere [8] we describe features of Argo that
address the cognitive challenges of design raised by these
theories. In the following sections we focus on designers’ need
for knowledge and how Argo’s critiquing infrastructure
delivers that knowledge.

APPROACH
Traditional approaches to software analysis follow the
authoritative assumption: they support architectural
evaluation by proving the presence or absence of well
defined properties. This allows them to give definitive
feedback to the architect, but limits their application to late
in the design process after the architect has formalized
substantial parts of the architecture.

Critics are active agents that support decision-making by
continuously and pessimistically analyzing partial
architectures. Each critic checks for the presence of certain
conditions in the partial architecture. Due to their continuous
and pessimistic nature, however, care must be taken to
ensure that critics do not distract the architect by providing
an overwhelming volume of feedback.Criticism control
mechanisms are used to control the execution of critics and
manage their feedback, so as to inform the architect without
distracting from the design task at hand. Critics are
embedded in a design environment where they have access
to the architecture as it is being modified and to a model of
the design process as it is being enacted. Figure 1 shows an
overview of Argo. Figure 2 shows a screenshot of Argo
modeling an example architecture.

The critic-based approach makes what we call the
informative assumption: architects are capable of making
design decisions, and analysis is used to support architects
by informing them of potential problems and pending
decisions. Critics are written to pessimistically detect
potential problems. They need not go so far as to prove the
presence of problems; in fact, formal proofs are often not
possible, or meaningful, on partial architectures. This

approach avoids the need to assume that critics have
complete knowledge, and facilitates incremental
development and improvement of critics.

FEATURES OF ARGO

Critics
Critics can deliver knowledge to architects about the
implications of, or alternatives to, a design decision. In the
vast majority of cases, critics simply advise the architect of
potential errors or areas needing improvement in the
architecture; only the most severe errors are prevented
outright, thus allowing the architect to work through invalid
intermediate states of the architecture. Architects need not
know that any particular type of feedback is available or ask
for it explicitly. Instead, they simply receive feedback as they
manipulate the architecture. Feedback is often most valuable
when it addresses issues that the architect had previously
overlooked and might never seek to investigate without
prompting.

Each critic performs its analysis independently of others,
checking one predicate, and delivering one piece of design
feedback. Critics encapsulate domain knowledge of a variety
of types. Correctness critics detect syntactic and semantic
flaws. Completeness critics remind the architect of
incomplete design tasks. Consistency critics point out
contradictions within the design. Optimization critics
suggest better values for design parameters. Alternative
critics present the architect with alternatives to a given
design decision. Evolvability critics consider issues, such as
modularization, that affect the effort needed to change the
design over time. Presentation critics look for awkward use
of notation that reduces readability. Tool critics inform the
architect of other available design tools at the times whenFigure 1. Design Environment Facilities of Argo

To Do

Architect

Critics with Design Knowledge

Internal
Representation Design

Feedback

Control

Design Interactions

Process
ModelPerspectives

List

Decision
Model

Analysis
Situated

To Do

Architect

Critics with Design Knowledge

Internal
Representation

Design

Feedback

Control

Design Interactions

Process
ModelPerspectives

List

Decision
Model

Analysis
Situated

Figure 1. Design Environment Facilities of Argo

Figure 2. A partially specified architectural model of a system



3

those tools are useful. Experiential critics provide reminders
of past experiences with similar designs or design elements.
Organizational critics express the interests of other
stakeholders in the development organization. These types
serve to aggregate critics so that they may be understood and
controlled as groups. Some critics may be of multiple types,
and new types may be defined, as appropriate for a given
application domain. Table 1 shows some example
architecture critics.

Criticism Control Mechanisms
Formalizing the analyses and rules of thumb used by
practicing software architects could produce hundreds or
thousands of critics. To provide the architect with usable
information, a subset of these critics must be selected for
execution at any given time. Critics must be controlled so as
to make efficient use of machine resources, but our primary
focus is on effective interaction with the architect.

Criticism control mechanisms are predicates used to limit
execution of critics to when they are relevant and timely to
design decisions being considered by the architect. For
example, critics related to “fine tuning” an architecture
should not be active when the architect is working on its
rough organization. Attributes on each critic identify what
type of design decision it supports. Criticism control
mechanisms check those attributes against the design goals
and process model. Computing relevance and timeliness
separately from critic predicates allows critics to focus
entirely on identifying problematic conditions in the product
(i.e., the partial architecture) while leaving cognitive design
process issues to the criticism control mechanisms. This
separation of concerns also makes it possible to add value to
existing critics by defining new control mechanisms.

Feedback Management
Once critics generate design feedback, it must be presented
to the architect in a usable form without distracting the
architect. In Argo, the “to do” list user interface presents
feedback to the architect (Figure 3).When the architect
selects a pending feedback item from the upper pane, the
associated (or “offending”) architectural elements are
highlighted in all design perspectives and details about the
open design issue and possible resolutions are displayed in
the lower pane. The designer may also follow links to

background domain knowledge relevant to the issue at hand,
or send email to the person who authored the critic. Together
these pieces of information provide a design context that the
designer can use to resolve the issue at hand. Providing
contact information for relevant stakeholders helps to situate
the problem and possible solutions in the context of the
development organization.

RELATED WORK
Our focus on the cognitive needs of architects stems from the
work of Fischer and colleagues [2]. In applying design
environments to software architecture [8], we extended
previous design environment facilities to support cognitive
needs identified in the cognitive theories of reflection-in-
action (via critics), opportunistic design (via a process
model and “to do” list”), and comprehension and problem
solving (via multiple-coordinated views [6, 12]).

Figure 3. Argo’s to do list indicating several open design issues

Table 1. Examples of Architecture Critics

Name of Critic Explanation

Interface Mismatch This component needs the certain messages be sent or received, but they are not present.

Direct Connection Violation of C2 style guidelines. Consider using a message bus to allow new components later.

Component Choice Here are other components that could “fit’’ in place of what you have: <<list of components>>.

Too Much Memory Calculated memory requirements exceed stated goals

Too Many Components There are too many components at the same level of decomposition to be easily understood.

Hard Combination to Test If you need to use these components together, please make arrangements with the testing manager.

Generator Limitation The default code generator can not make full use of this component.

Not Enough Reusable Com-
ponents

The fraction of components marked as being reusable is below your stated goals.



4

Aesop [11] is a tool that generates style-specific software
architecture design environments from a set of formal style
descriptions. Aesop primarily addresses requirements of
architecture representation, manipulation, visualization, and
analysis, without providing explicit support for evolutionary
design or the architect’s cognitive needs.

STATUS AND FUTURE WORK
It is our goal to develop and distribute a reusable design
environment infrastructure that others may use, extend, and
integrate with their research to better support architectural
evolution and architects’ cognitive needs. To date we have
produced two prototypes. The current version is
implemented in Java and is available with documentation via
http://www.ics.uci.edu/pub/arch.

In future work we will continue the themes of our current
research and increase the functionality of our prototype. The
identification of new theories of cognitive challenges may
result in new features. Also, Argo provides the potential to
measure the impact that various kinds of knowledge have on
designers’ decisions. We plan to explore issues of design
rational: critics may serve as a foil1 that encourages
designers to make rational more explicit, and the rational for
previous decisions is an important part of the design context
of current issues.

ACKNOWLEDGEMENTS
Effort sponsored by the Defense Advanced Research
Projects Agency, and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-97-2-
0021 and F30602-94-C-0218, and by the National Science
Foundation under Contract Number CCR-9624846.
Additional support is provided by Rockwell International.
The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The
views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research
Projects Agency, Rome Laboratory or the U.S. Government.
Approved for Public Release — Distribution Unlimited.

1. In acting terminology, a foil is a minor character
who serves to highlight and clarify a major charac-
ter, usually through dialog.

REFERENCES
1. Curtis, W., Krasner, H., and Iscoe, N. A field study of the

software design process for large systems.Comm. ACM.
1988. vol. 31, no. 11. pp. 1268-1287.

2. Fischer, G. Domain-oriented design environments.Proc.
7th Knowledge-Based Software Engineering Conference.
pp. 204-213.

3. Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., and
Sumner, T. Embedding computer-based critics in the con-
texts of design.INTERCHI’93. April 1993. pp.157-164.

4. Guindon, R., Krasner, H., and Curtis, W. Breakdown and
processes during early activities of software design by
professionals. In: Olson, G. M. and Sheppard S., eds.
Empirical Studies of Programmers: Second Workshop.
Norwood, NJ: Ablex Publishing Corporation. 1987. pp.
65-82.

5. Kintsch, W. and Greeno, J. G. Understanding and solving
word arithmetic problems.Psychological Review. 1985.
vol. 92. pp. 109-129.

6. Kruchten, P. B. The 4+1 view model of architecture.
IEEE Software. Nov. 1995. pp. 42-50.

7. Pennington, N. Stimulus structures and mental represen-
tations in expert comprehension of computer programs.
Cognitive Psychology. 1987. vol. 19. pp. 295-341.

8. Robbins, J. E., Hilbert, D. M., Redmiles, D. F. Extending
design environments to software architecture design.
Proc. 11th Knowledge-Based Software Engineering Con-
ference’96. pp. 63-72.

9. Schoen, D.The Reflective Practitioner: How Profession-
als Think in Action. 1983. New York: Basic Books.

10. Schoen, D. Designing as reflective conversation with the
materials of a design situation.Knowledge-Based Sys-
tems. 1992. vol. 5, no. 1. pp. 3-14.

11. Shaw, M., Garlan, D. Software Architecture: Perspec-
tives on an Emerging Discipline. Prentice Hall, 1996.

12. Soni, D., Nord, R., Hofmeister, C. Software Architecture
in Industrial Applications.Proc. Inter. Conf. on Software
Engineering 17. 1995. pp. 196-207.

13. Stacy, W. and MacMillian, J. Cognitive Bias in Software
Engineering.Comm. ACM. June 1995. pp. 57-63.

14. Visser, W. More or Less Following a Plan During
Design: Opportunistic Deviations in Specification.Int. J.
Man-Machine Studies. 1990. pp. 247-278.


