
1

Abstract
Software architectures evolve as the result of numerous, interrelated
design decisions. At any point in an architecture’s evolution, current
decisions can critically affect alternatives at later stages, and each
decision has the potential of requiring previous decisions to be
reconsidered. Analysis techniques that provide feedback only after
“complete” sequences of design decisions have been made do not
directly support the evolutionary nature of the architecture design
process. In this paper we present an approach to architectural analy-
sis that more closely supports evolution by providing feedback as
design decisions are made.

I. Introduction

Software architectures are constructed incrementally as the result of
numerous interrelated design decisions made over extended periods.
We visualize architecture design as a process in which a path is
traced through a forking space of design alternatives. A particular
software architecture can be thought of as the product of a path
through this space.

Existing approaches to architectural analysis are coarse-grained
and discrete. Design decisions are entered into a formal representa-
tion. That formal representation is fed as input to analysis tools
which produce output regarding properties of the representation.
Finally, architects interpret the output, relate it back to design deci-
sions embodied in the representation, and prepare the design for
another iteration. In sum, existing approaches require the architect to
suspend the evolution of the architecture by creating a snapshot for
analysis and, consequently, to suspend or delay the decision-making
process by clustering modifications between evaluation opportuni-
ties. This design process is coarse-grained, operating on whole
architectures as units. The cognitive process is correspondingly
coarse-grained, dealing with clusters instead of individual decisions.

In contrast to this coarse-grained, discrete approach, we propose
a fine-grained, concurrent approach. Namely, we advocate the use of
critics to perform analysis on partial architectural representations
while architects are considering individual design decisions and
modifying the architecture. Analysis is concurrent with decision-
making so that architects are not forced to suspend the architecture’s
evolution or cluster their decisions in preparation for analysis. Feed-
back from critics can be used by architects while they are consider-
ing design decisions. Furthermore, critic feedback is directly linked

to elements of the architecture thereby assisting architects in apply-
ing the feedback in revising the design. We believe this approach
more directly supports the evolutionary nature of the architecture
design process and the cognitive needs of software architects.

II. Overview of the Critic-Based Approach

Traditional approaches to software analysis follow the authoritative
assumption: they support architectural evaluation by proving the
presence or absence of well defined properties. This allows them to
give definitive feedback to the architect, but limits their application
to late in the design process after the architect has formalized sub-
stantial parts of the architecture. Evolutionary architecture design
can be better supported by the introduction of continuous, incremen-
tal analysis throughout the evolution of a complex system.

Critics are active agents that support decision-making by contin-
uously and pessimistically analyzing partial architectures. Each
critic checks for the presence of certain conditions in the partial
architecture. Due to their continuous and pessimistic nature, how-
ever, care must be taken to ensure that critics do not distract the
architect by providing an overwhelming volume of feedback. Criti-
cism control mechanisms are used to control the execution of critics
and manage their feedback, so as to inform the architect without dis-
tracting from the design task at hand. Critics are embedded in a
design environment where they have access to the architecture as it is
being modified and to a model of the design process as it is being
enacted. Figure 1 shows an overview of Argo, our design environ-
ment for C2 style [16] software architecture. Figure 2 shows a
screenshot of Argo modeling an example C2 style architecture.

The critic-based approach makes what we call the informative
assumption: architects are capable of making design decisions, and
analysis is used to support architects by informing them of potential
problems and pending decisions. Critics are written to pessimisti-
cally detect potential problems. They need not go so far as to prove
the presence of problems; in fact, formal proofs are often not possi-
ble, or meaningful, on partial architectures. If such analyses cannot
be done incrementally, then they might still be packaged as critics,
although their timeliness may be reduced. Alternatively, external
analysis tools can be paired with “proxy critics” that remind the
architect when those tools should be invoked.

The critic-based analysis approach has the potential to combine
heuristic and authoritative approaches to better support evolutionary
architectural design. Authoritative analysis tools provide definitive
design feedback, but are often packaged as batch processes (e.g.,
UNIX commands) that the architect must explicitly invoke with a
complete architecture as input. When heuristic critiquing is pack-
aged as external tools (e.g., the UNIX lint tool), users often delay
analysis until substantial effort has been put into formalizing tenta-

Using Critics to Analyze Evolving Architectures

Jason E. Robbins David M. Hilbert David F. Redmiles

{jrobbins,dhilbert,redmiles}@ics.uci.edu

Department of Information and Computer Science
University of California, Irvine
Irvine, California 92697-3425

To appear in the Second International Software Architecture Workshop held at SigSoft’96

2

tive design decisions, and then feel overwhelmed by unmanaged
feedback.

III. Characteristics of Critics

The cognitive theory of reflection-in-action [12] observes that
designers of complex systems cannot conceive a design all at once.
Instead, they must construct a partial design, evaluate, reflect on, and
revise it, until they are ready to extend it further. Software architec-
ture design environments can support reflection-in-action by using
critics to analyze the architecture and give design feedback to the
architect.

Critics can deliver knowledge to architects about the implica-
tions of, or alternatives to, a design decision. In the vast majority of
cases, critics simply advise the architect of potential errors or areas
needing improvement in the architecture; only the most severe errors
are prevented outright, thus allowing the architect to work through
invalid intermediate states of the architecture. Architects need not
know that any particular type of feedback is available or ask for it
explicitly. Instead, they simply receive feedback as they manipulate
the architecture. Feedback is often most valuable when it addresses
issues that the architect had previously overlooked.

We can define a variety of potential types of critics, each type
delivering a specific kind of knowledge. Correctness critics detect
syntactic and semantic flaws in the partial design. Completeness
critics detect when a design task has been started but not yet fin-
ished. Consistency critics detect contradictions within the design.
Presentation critics detect awkward use of the notation. Alternative
critics remind the designer of alternatives to a given design decision.
Optimization critics suggest better values for design parameters.
These types serve to aggregate critics so that they may be under-
stood and controlled as groups. Some critics may be of multiple
types, and new types may need to be defined, as appropriate, for a
given application domain.

We expect critics to be invented for various reasons and by vari-
ous stakeholders. Practicing architects may define critics to capture
their experience in building systems and distribute those critics to
other architects in their organization. Researchers may define critics
to support an architectural style. Component vendors may define
critics to add value to the components that they sell, and to reduce
support costs. Critics may be implemented to speculate about impli-
cations of a given decision based on empirical data that indicates
correlations. Also, existing literature on architectural styles and sys-
tem design provides advice that can be made active via critics.

In Argo, a critic is implemented as a combination of an analysis
predicate, attributes for determining relevance, and a “to do” list
item to be given as design feedback. The stored “to do” list item
contains a headline, a description of the issue at hand, contact infor-
mation for the critic’s author, and a hyperlink to more information.

Criticism control mechanisms select critics for execution. Dur-
ing execution a critic evaluates its analysis predicate and, if appro-
priate, constructs a “to do” list item and posts it. We encode critics as
programming language predicates; deciding on what languages are
best for expressing critics is a topic for future research. Table 2 pre-
sents a connection checking critic in detail.

IV. Criticism Control Mechanisms

The “to do” list supports the cognitive theory of opportunistic design
[9, 15, 18], which observes that designers of complex systems tend
not to follow prescribed plans of action, even their own plans. The
theory suggests that designers choose their next task so as to mini-
mize the cost of contextual switching. The ordering of design tasks
that minimizes costs normally cannot be known before individual
design decisions are made. For example, if a decision raises design
issues that require a deviation from the current process, the architect

Figure 2. Conceptual Architecture Perspective

Figure 1. Design Environment Facilities of Argo

To Do

Architect

Critics with Design Knowledge

Internal
Representation Design

Feedback

Control

Design Interactions
Process
Model

Perspectives

List

Decision
Model

Analysis
Situated

Table 1. Selected Argo Architectural Critics

Name of Critic Critic Type
Decision
Category

Explanation

Invalid Connection Correctness Connecting Mandatory message signatures not satisfied by adjacent compo-
nents in the conceptual architecture

One Up One Down Correctness Connecting Violation of C2 configuration rules

Simpler Comp. Avail. Alternative Choosing A “smaller” component will “fit” in place of what you have

Too Much Memory Consistency Resources Calculated memory requirements exceed stated goals

Need more reuse Consistency Choosing Percentage of reusable components is below stated goals

OS Incompatibility Consistency Choosing Components have conflicting environmental requirements

3

must either deviate, or mentally defer those issues in order to con-
tinue with the current process. Such process deviations may be
desirable from a cognitive point of view, but they may lead designers
into a variety of difficulties [6]. Fortunately, design environments
can support the architect in making more informed and systematic
choices as to what task ordering to follow. The “to do” list comple-
ments the process model in providing flexibility, visibility, and
reminding.

Criticism control mechanisms ensure relevance and timeliness
by using explicit models of the design goals and the design process.
Attributes on each critic identify what type of design decision it sup-
ports. Criticism control mechanisms check those attributes against
the design goals and process model. Argo’s process model is an
activity network, where each activity handles design decisions of a
certain type; the architect indicates which activities are currently in
progress, and control mechanisms activate only timely critics.

Once critics generate design feedback, it must be presented to
the architect in a usable form without distracting the architect. In
Argo, the “to do” list user interface presents feedback to the archi-
tect (Figure 2). When the architect selects a pending feedback item
from the upper pane, the associated (or “offending”) architectural
elements are highlighted in all design perspectives and details about
the open design issue and possible resolutions are displayed in the
lower pane. Items may be filtered or sorted by various attributes,
although architects may address issues in any order they choose.

V. Supporting Diverse Analysis via Critics

As the architecture evolves, new design issues will be identified,
new information about the architecture will be recognized as rele-
vant, and new critics should be written. To support evolution, the
ADL should support new analyses by allowing for the addition of
new attributes on individual architectural elements as needed by
those analyses. In Argo, an architecture is represented as an anno-
tated, connected graph with nodes, ports, and arcs. Several other
ADLs are based on similar underlying concepts, including the C2
ADL [8] and ACME [5].

Independent critics may deliver diverse expert opinions or rules
of thumb, even if they conflict. For example, one critic could advise
that there are too many components at a given level of the architec-
tural decomposition and suggest further decomposition, while
another might advise that there are too many levels and suggest con-
solidating existing levels. Conflict per se is not a goal, but allowing
conflict yields more complete support; whereas, forbidding conflict
would essentially prevent architects from seeing more than one side
of a design issue.

In Argo, to help organize large numbers of critics, we associate
critics with the definitions of active architectural elements. Those
definitions need to be loaded into the design environment only when

those particular architectural elements are used. This limits the num-
ber of critics that are active at a given time, and allows the producers
of software components to supply models of those components with
embedded critics. For example, in a future software component mar-
ketplace, an architect might download several graph editing compo-
nent models, try them in the current architecture, consider the
resulting design feedback, and make an informed purchase decision.

A complementary approach to organizing diverse architectural
knowledge is the definition of architectural styles [4, 16]. Styles
define the vocabulary of the architecture and a set of rules that deter-
mine if an architecture is well formed. Architectural styles provide
design guidance by suggesting constraints on design decisions.
Styles may also guide analysis authors, in that critics may be
grouped by style. In Argo, styles serve to organize critics, not to
impose an exclusive mode on the design environment. For example,
a partial architecture may nearly satisfy the rules of several styles,
and the feedback from style critics related to each of those styles
may be useful.

The informative assumption lowers the barrier to critic author-
ship so that diverse critic authors may encode their knowledge as
critics. Design rationale for a given project can be made active by
encoding it in critics. For example, when one architect has a negative
experience with poor redraw performance using a given graph edit-
ing component, the experience can be captured in a critic that looks
for the same decision in other architectures and actively provides
feedback to share the experience. Under the authoritative assump-
tion, the critic author would have to prove that the same design deci-
sion will yield poor performance in other systems; that alone may be
enough to prevent the critic from being written. Furthermore, if the
architect who reuses the component is not automatically presented
with that feedback when it is timely and relevant, it is unlikely to
improve his or her design decisions.

The effectiveness of a critic in identifying design decisions that
need to be made or revised is determined by the specificity of its
predicate. The effectiveness of design feedback is determined by the
quality and relevance of the supplied information. The critic author is
responsible for both the predicate and the information. Our approach
cannot guarantee the quality of the author’s work, but it does help the
architect take advantage of critics from various authors.

VI. Related Work

Our focus on the cognitive needs of architects stems from the work
of Fischer and colleagues [2]. In applying design environments to
software architecture, we extended previous design environment
facilities to support cognitive needs identified in the cognitive theo-
ries of reflection-in-action (via critics), opportunistic design (via a

Figure 3. The Architect’s To Do List

Table 2. Details of the Invalid Connection Critic

Attribute Value

Name Invalid Connection

Type Correctness

Decision
Category

Connecting

Smalltalk
Predicate

[:comp | | invalidServices |
invalidServices :=

comp inputs , comp outputs
select:[:s | s isSatisfied not].

invalidServices isEmpty not.]

Description “The following port protocols are unsatisfied for
these services:” <<a list of ports and services>>

More Info http://www.ics.uci.edu/~jrobbins/

Expert jrobbins@ics.uci.edu

4

process model and “to do” list”), and comprehension and problem
solving (via multiple-coordinated views [7, 14]). Our extensions and
their implementation are discussed in [10].

Aesop [4, 13] is a tool that generates style-specific software
architecture design environments from a set of formal style descrip-
tions. Aesop primarily addresses requirements of architecture repre-
sentation, manipulation, visualization, and analysis, without
providing explicit support for evolutionary design or the architect’s
decision-making process. For example, architectural manipulations
that violate style rules may fail without providing any guidance to
the architect [13]. Other software architecture design environments
such as DaTE [1] and MetaH [17] also focus on systems-oriented
requirements rather than the architect’s cognitive needs.

In Aesop, most analysis is performed by external tools that are
explicitly invoked by the architect. Externalizing analysis eases
reuse of existing analysis tools, but makes it more difficult to inte-
grate analysis feedback into the decision-making process. Explicit
invocation of analysis tools places a cognitive burden on the archi-
tect who must be aware of available analysis tools, recognize when
they are appropriate, and know how their feedback relates back to
the graphical depiction in Aesop. Explicit invocation of external
tools scales well in terms of machine resources, but not in terms of
human cognitive ability. We believe that cognitive burden alone may
be enough to prevent the effective use of diverse analyses. In our ter-
minology, Aesop currently provides no feedback management
mechanisms.

VII. Summary and Future Work

One of our main contributions is that our approach is scalable in the
number of critics and extensible to many new types of critics. It sup-
ports the integration of diverse analysis techniques from potentially
varied sources, and addresses issues of feedback management to
ensure that design feedback is timely, relevant, and manageable. The
critic-based approach supports diversity by removing any assump-
tion of cooperation among analysis developers, and by making the
architect’s cognitive burden independent of the number of available
analyses.

In future work we will continue the themes of our current
research. Further identification of the cognitive needs of architects
will lead to new design environment facilities to support those
needs [11]. We intend to explore the trade-off between the depth and
timeliness of feedback. In doing so we will develop a methodology
for integrating external analysis tools as discussed above and investi-
gate critics which, over the entire course of the design process, accu-
mulate shared data and perform more in-depth analyses.

Our prototype of Argo is robust enough for experimental usage;
in fact, we are using it to design the next version. However, it is our
goal to develop and distribute a reusable design environment infra-
structure that others may use, extend, and integrate with their
research to better support architectural evolution and the architect’s
decision-making process. Successful usage of our infrastructure by
others will serve to inform and evaluate our research. To date we
have produced two prototypes. The initial version, coded in Small-
talk, was demonstrated at ICSE-17. The current version is imple-
mented in Java and is available with documentation via http://
www.ics.uci.edu/pub/arch.

VIII. Acknowledgments

The authors would like to thank Peyman Oreizy and Neno Medvi-
dovic for their helpful comments and discussion. This research is
supported in part by the Air Force Material Command and the
Advanced Research Projects Agency under Contract Number
F30602-94-C-0218, and by the National Science Foundation under
Contract Number CCR-9624846. The content of the information

does not necessarily reflect the position or the policy of the funders
and no official endorsement should be inferred.

IX. References

[1] Batory, D. and O’Malley, S. The design and implementation of
hierarchical software systems with reusable components.ACM
Transactions on Software Engineering and Methodology, Oct.
1992, vol.1, no. 4, 355-98.

[2] Fischer, G. Domain-Oriented Design Environments.Proc. of
The 7th Knowledge-Based Software Engineering Conference.
204-213.

[3] Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., and Sumner,
T. Embedding Computer-Based Critics in the Contexts of
Design. INTERCHI’93. April 1993. 157-164.

[4] Garlan, D., Allen, R., and Ockerbloom, J. Exploiting style in
Architectural Design Environments.Proceedings of the
Second ACM SIGSOFT Sym. on the Foundations of Software
Engineering, 1994. Software Engineering Notes, Dec. 1994,
vol 19, no.5, 175-88.

[5] Garlan, D., Monroe, R., Wile, D. ACME: An Architecture
Interchange Language. Technical Report CMU-CS-95-219,
Dec. 1995.

[6] Guindon, R., Krasner, H., and Curtis, W. Breakdown and
Processes During Early Activities of Software Design by
Professionals. In: G.M. Olson ES S. Sheppard, ed.Empirical
Studies of Programmers: Second Workshop. Norwood, NJ.
1987. 65-82.

[7] Kruchten, P. B. The 4+1 View Model of Architecture.IEEE
Software. Nov. 1995. 42-50.

[8] Medvidovic, N., Taylor, R. N., and Whitehead, Jr., E. J. Formal
Modeling of Software Architectures at Multiple levels of
Abstraction. Proceedings of the California Software
Symposium (CSS’96), Los Angeles, CA, USA, April 1996.

[9] Rist, R. Variability in program design: the interaction of
knowledge and process.The Inter. J. of Man-Machine Studies
1990, 1-72.

[10] Robbins, J. E., Hilbert, D. M., Redmiles, D. F., Extending
Design Environments to Software Architecture Design.
KBSE’96, in press.

[11] Robbins, J. E. and Redmiles D. F. Software Architecture from
the Perspective of Human Cognitive Needs.Proc. of the
California Software Symposium (CSS’96). April 1996. 16-27.

[12] Schoen, D.The Reflective Practitioner: How Professionals
Think in Action. New York: Basic Books, 1983.

[13] Shaw, M., Garlan, D.Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall, 1996.

[14] Soni, D., Nord, R., and Hofmeister C. Software Architecture in
Industrial Applications.Inter. Conf. on Software Engineering 17,
1995, 196-207.

[15] Soloway, E., Pinto, J., Letovsky, S., Littman, D., and Lampert,
R. Designing Documentation to Compensate for Delocalized
Plans.Communications of the ACM 1988; vol. 31, no. 11,
1259-1267.

[16] Taylor, R. N., Medvidovic, N., Anderson, K., Whitehead, Jr.,
E. J., Robbins, J. E., Nies, K. A., Oreizy, P., and Dubrow, D. L.
A Component and Message-based Architectural Style for GUI
Software. IEEE Transactions on Software Engineering, to
appear.

[17] Verstal, S. Mode changes is real-time architecture description
language. InProc. of the Second International Workshop on
Configurable Distributed Systems, March 1994.

[18] Visser, W. More or less following a plan during design:
opportunistic deviations in specification.International Journal
of Man-Machine Studies 1990; 247-278.

