
, , 1{34 ()
c
 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Extending Design Environments to Software

Architecture Design

JASON E. ROBBINS, DAVID M. HILBERT, DAVID F. REDMILES

fjrobbins,dhilbert,redmilesg@ics.uci.edu

University of California, Irvine

Received February 6, 1997

Editor:

Abstract. Designing a complex software system is a cognitively challenging task; thus, designers
need cognitive support to create good designs. Domain-oriented design environments are cooper-

ative problem-solving systems that support designers in complex design tasks. In this paper we
present the architecture and facilities of Argo, a domain-oriented design environment for software

architecture. Argo's own architecture is motivated by the desire to achieve reuse and extensibility
of the design environment. It separates domain-neutral code from domain-oriented code, which is

distributed among active design materials as opposed to being centralized in the design environ-
ment. Argo's facilities are motivated by the observed cognitive needs of designers. These facilities

extend previous work in design environments by enhancing support for re
ection-in-action, and
adding new support for opportunistic design and comprehension and problem solving.

Keywords: Domain-oriented design environments, software architecture, human-computer inter-

action, human cognitive skills, evolutionary design

1. Introduction

Designing a complex software system is a cognitively challenging task; thus, design-

ers need cognitive support to create good designs. Domain-oriented design envi-

ronments (DODEs) are cooperative problem-solving systems that support designers

in complex design tasks (Fischer and Lemke, 1988; Fischer et al., 1992; Fischer,

1994; Rettig, 1993). They are domain-oriented in that important concepts and

constructs of a particular domain are provided by the environment: this helps close

the gap between designers' knowledge and the notation used by the environment.

They are cooperative in that they take into account the complementary strengths

and weaknesses of humans and computer systems: designers focus on tasks such

as specifying and adjusting design goals, decomposing problems into subproblems,

and maintaining conceptual integrity; while the system supports designers by pro-

viding external memory, hiding non-essential details, checking for inconsistencies or

potential design
aws, and providing design guidance, analysis, and visualization

capabilities.

Domain-oriented design environments have been recognized as complementary

to more traditional approaches to knowledge-based software engineering (Fischer,

1994). In contrast to program synthesis approaches (Partsch and Steinbruggen,

2 ROBBINS, HILBERT, AND REDMILES

1983), DODEs provide a more interactive, iterative model that places emphasis on

the evolutionary nature of design and the cognitive needs of designers.

Like program synthesis approaches, existing software architecture design tools

have tended to be coarse-grained and discrete in approach. Design decisions are

entered into a formal representation. That representation is fed as input to anal-

ysis tools which produce output regarding properties of the representation. Then,

architects interpret the output, relate it back to design decisions embodied in the

representation, and prepare the design for another iteration. In sum, existing ap-

proaches require the architect to perform batches of modi�cations between eval-

uation opportunities. This design process is coarse-grained, operating on whole

architectures as units. The cognitive process is correspondingly coarse-grained,

dealing with batches of decisions instead of individual decisions.

In contrast to this coarse-grained, discrete approach, we pursue a more �ne-

grained and concurrent approach based on DODEs. In the DODE approach, active

agents, known as critics, perform analysis on partial architectural representations

while architects are considering individual design decisions and modifying the ar-

chitecture. Analysis is concurrent with decision-making so that architects are not

forced to suspend the architecture's evolution or batch their decisions in prepa-

ration for analysis. Design feedback from critics can be used by architects while

they are considering design decisions. Moreover, design feedback is directly linked

to elements of the architecture thereby assisting architects in applying the feed-

back to revise the design. As will be discussed in Section 5, this approach more

directly supports the evolutionary nature of the architecture design process and the

cognitive needs of software architects.

The design environment facilities explored by Fischer and colleagues have pro-

vided an essential basis for our work. However, in building the Argo software

architecture design environment we have extended previous work in two important

ways: design environment extensibility and additional support for designers' cog-

nitive needs. First, our architecture demonstrates a shift from a large, knowledge-

rich design environment that manipulates passive design materials to a smaller,

knowledge-poor design environment infrastructure that allows the user to interact

with active, knowledge-rich design materials. Speci�cally, critics are associated with

design materials stored in active design documents rather than being centralized in

the design environment. Second, we extend previous design environment facilities

by enhancing support for re
ection-in-action, and adding new support for cogni-

tive needs identi�ed in the theories of opportunistic design and comprehension and

problem solving. Speci�cally, we add a
exible process model and \to do" list to ex-

plicitly support opportunistic design, and multiple, coordinated design perspectives

to aid in comprehension and problem solving.

This paper is organized as follows. In Section 2 we discuss previous work in design

environments and existing software architecture design tools and styles. Section 3

presents an overview of Argo. Sections 4 and 5 discuss the two main contributions of

our work. Section 4 is devoted to Argo's implementation, internal representations,

and architecture. Section 5 describes the cognitive theories that have motivated

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 3

the facilities of Argo, and how these facilities extend previous work. Section 4 sets

the stage for Section 5. Each cognitive theory is mapped to speci�c supporting

features of Argo's implementation. Section 6 discusses evaluation of Argo. Finally,

Section 7 presents conclusions and future work.

2. Previous Work

2.1. Design Environments and Cognitive Theories

A domain-oriented design environment is a tool that augments a human designer's

ability to design complex artifacts. The concept of human augmentation is based

on the work of Engelbart and others who researched ways computers could enhance

peoples' performance of intellectual tasks (Engelbart, 1988, 1995). Design environ-

ments address systems-oriented issues such as design representation, transforma-

tions on those representations (e.g., code generation), and application of analysis

algorithms. However, they go beyond most tools in their support for the designer's

cognitive needs by including features speci�cally intended to address those needs.

The cognitive theory of re
ection-in-action observes that designers of complex

systems do not conceive a design fully-formed (Schoen, 1983, 1992). Instead, they

must construct a partial design, evaluate, re
ect on, and revise it, until they are

ready to extend it further. For example, a software architect usually cannot decide

in advance that a certain component will use certain machine resources. That

decision is usually made in the context of other decisions about inter-component

communication and machine resource allocation. A similar process can be observed

when modifying an existing design. This theory suggests that design environments

must provide design feedback to support decision-making in the context of partial

designs, i.e. while designs are being manipulated.

Design environments support re
ection-in-action with critics that give design

feedback. Design critics are agents that watch for speci�c conditions in the partial

design as it is being constructed and notify the designer when those conditions

are detected. Critics deliver knowledge to designers about the implications of, or

alternatives to, a design decision. In the vast majority of cases, critics simply ad-

vise the designer of potential errors or needed improvements; only the most severe

errors are prevented outright, thus allowing the designer to work through invalid

intermediate design states. Designers need not know that any particular type of

feedback is available or ask for it explicitly. Instead, they simply receive feedback

as they manipulate the design.

Designers can bene�t from domain knowledge when it is delivered to them via

critics. Even experienced designers need knowledge support in complex domains

or when working with new design materials. The \thin spread of application do-

main knowledge" has been identi�ed as a general problem in software development

(Curtis, Krasner, and Iscoe, 1988). Examples of domain knowledge that can be

delivered by critics include well-formedness of the design, hard constraints on the

design, rules of thumb about what makes a good design, industry standards, orga-

4 ROBBINS, HILBERT, AND REDMILES

Specification

Simulation

Construction Kit

Hypermedia
Argumentative

Catalog Explorer

Catalog

Catalog Explorer

Argumentation Illustrator

Construction Analyzer

Figure 1. Design environment facilities of Janus, adapted from (Fischer, 1994).

nizational guidelines, and the opinions of fellow project stakeholders and domain

experts.

Design environments such as Framer (Lemke and Fischer, 1990), Janus (Fischer,

1994), Hydra (Fischer et al., 1993), and VDDE (Voice Dialog Design Environment)

(Sumner, Bonnardel, and Kallak, 1997) support re
ection-in-action. Figure 1 shows

facilities of this family of design environments. The domain-oriented construction

kit facility allows users to visualize and manipulate a design. The construction ana-

lyzer facility critiques the design to give design feedback that is linked to hypertext

argumentation. The goal speci�cation facility helps to keep critics relevant to the

designer's objectives. Re
ection-in-action is also supported by simulation facilities

that allow what-if analysis as a further design evaluation. A catalog of example

designs can be accessed via the catalog explorer facility.

Designers will gain the most from design feedback that is both timely and relevant

to their current design task. Design environments can address timeliness by linking

critics to a model of the design process. For instance, Framer uses a checklist

to model the process of designing a user interface window. At a given time the

designer works on one checklist item and only critics relevant to that item are

active. Design environments can address relevance by linking critics to speci�cations

of design goals. For instance, Janus and Hydra allow the designer to specify goals

for kitchen
oorplans, and thus activate only those critics relevant to stated design

goals. Furthermore, Hydra uses critiquing perspectives (i.e., explicit critiquing

modes) to activate critics relevant to any given set of design issues and deactivate

irrelevant critics.

2.2. Architectural Styles

Work on software architecture (Perry and Wolf, 1992) has focused on representing

systems as composed of software components and connectors (Garlan and Shaw,

1993). Architectural styles constrain and inform architectural design by de�ning

the types of components and connectors available and the ways in which they may

be combined (Abowd, Allen, and Garlan, 1993). Styles can be expressed as a set of

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 5

style rules. A simple architectural style is pipe-and-�lter which de�nes components

to be batch processes with standard input and output streams, and connectors to

be data pipes. One pipe-and-�lter style rule is that the architecture should contain

no cycles.

Argo supports the C2 architectural style (Taylor et al., 1996). C2 is a component-

and message-based style designed to model applications that have a graphical user

interface. The style emphasizes reuse of UI components such as dialogs, structured

graphics models, and constraint managers (Medvidovic, Oreizy, and Taylor, 1997).

The C2 style can be informally summarized as a layered network of concurrent

components that communicate via message broadcast buses. Components may only

send messages requesting operations upward, and noti�cations of state changes

downward. Buses broadcast messages sent from one component to all components

in the next higher or lower layer. Each component has a top and bottom interface.

The top interface of a component speci�es the noti�cations that it handles, and

the requests it emits upward. The bottom interface of a component speci�es the

noti�cations that it emits downward, and the requests it handles.

2.3. Software Architecture Design Tools

Design tools in the domain of software architecture have tended to emphasize anal-

ysis of well-formedness and code generation. The Aesop system allows for a style-

speci�c design tool to be generated from a speci�cation of the style (Garlan, Allen,

and Ockerbloom, 1994). The DaTE system allows for construction of a running

system from an architectural description and a set of reusable software compo-

nents (Batory and O'Malley, 1992). Although not a software architecture tool,

AMPHION is similar in that it allows users to enter a graphical speci�cation from

which the system can generate a running program (Lowry et al., 1994). Each of

these systems provides support for design representation, manipulation, transforma-

tion, and analysis, but none of them explicitly supports architects' cognitive needs.

Argo can generate code to combine software components into a running system;

however, the main contribution of Argo to the software architecture community is

its emphasis on cognitive needs.

KBSA/ADM (Benner, 1996) is a software design environment that embodies the

results of many research projects stemming from a seminal vision of knowledge-

based software development support (Green et al., 1983). KBSA/ADM has many

features in commonwith Argo, including critics, a \to do" list, multiple coordinated

models of the system under design, and process modeling. KBSA/ADM is intended

to package previous research results into a full-featured software development envi-

ronment. In contrast, Argo is intended to explore possible features that explicitly

support identi�ed cognitive needs. Support for cognitive needs in both KBSA/ADM

and Argo is inspired by previous work in design environments, however we believe

that Argo has a more integrated, reusable, and scalable infrastructure that yields

better cognitive support.

6 ROBBINS, HILBERT, AND REDMILES

Situated
Analysis

To Do

Decision
Model

List

Design Interactions

Critics with Design Knowledge
Feedback

Representation
Internal Design

Perspectives

Model

Architect

Process

Control

Figure 2. Design environment facilities of Argo.

3. Overview of Argo

Figure 2 provides an overview of selected facilities of the Argo software architecture

design environment. The architect uses multiple, coordinated design perspectives

(Figure 3) to view and manipulate Argo's internal representation of the architecture

which is stored as an annotated, connected graph. Critics monitor the partial

architecture as it is manipulated, placing their feedback in the architect's \to do"

list (Figure 4). Argo's process model (Figure 5) serves the architect as a resource

in carrying out an architecture design process, while the decision model lists issues

that the architect is currently considering. Criticism control mechanisms use that

decision model to ensure the relevance and timeliness of feedback from critics.

For comparison, Figure 1 shows facilities of the Janus family of design environ-

ments. Like Janus, Argo provides a diverse set of facilities to support re
ection-in-

action including construction and critiquing mechanisms. Argo, however, extends

these facilities by integrating them with a
exible process model and \to do" list to

explicitly support opportunistic design, and multiple, coordinated design perspec-

tives to aid in comprehension and problem solving. Each of these cognitive theories

and the facilities that support them are discussed in Section 5.

The subsections below describe each of Argo's facilities. The last subsection

provides a usage scenario that describes how an architect might interact with Argo.

3.1. Critics

Critics support decision making by continuously and pessimistically analyzing par-

tial architectures and delivering design feedback. Each critic performs its analysis

independently of others, checking one predicate, and delivering one piece of design

feedback. Critics provide domain knowledge of a variety of types. Correctness

critics detect syntactic and semantic
aws. Completeness critics remind the archi-

tect of incomplete design tasks. Consistency critics point out contradictions within

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 7

Figure 3. Three architecture design perspectives: the Component{Component perspective (top)
shows conceptual component communication, the Classes perspective (middle) shows modular
structure, and the Resource{Component perspective (bottom) shows machine and operating sys-

tem resource allocation. The small window in the lower left shows the running KLAX game,
represented by this architecture.

8 ROBBINS, HILBERT, AND REDMILES

the design. Optimization critics suggest better values for design parameters. Al-

ternative critics present the architect with alternatives to a given design decision.

Evolvability critics consider issues, such as modularization, that a�ect the e�ort

needed to change the design over time. Presentation critics look for awkward use of

notation that reduces readability. Tool critics inform the architect of other available

design tools at the times when those tools are useful. Experiential critics provide re-

minders of past experiences with similar designs or design elements. Organizational

critics express the interests of other stakeholders in the development organization.

These types serve to describe and aggregate critics so that they may be understood

and controlled as groups. Some critics may be of multiple types, and new types

may be de�ned, as appropriate, for a given application domain. Altogether, we

have authored over �fty critics, including examples of each type. Some examples

of architecture critics are given in Table 1.

We expect critics to be authored by project stakeholders for various reasons. An

initial set of critics is developed by a domain engineer when constructing a domain-

oriented design environment. Practicing architects may de�ne critics to capture

their experience in building systems and distribute those critics to other architects

in their organization, or keep them for their own use in the future. A similar

authoring activity was observed by Gantt and Nardi who found that groups of

CAD tool users often had members they called \gardeners" that assumed the role of

codifying solutions to local problems (Gantt and Nardi, 1992). Practicing architects

may also re�ne existing critics by adding special cases to their predicates or by

modifying their feedback. For example, one way for an architect to resolve criticism

is to suggest a modi�cation to the critic that raised the issue. Researchers may also

de�ne critics to support an architectural style. Existing literature on architectural

styles and system design is a rich source of advice that can be made active via critics.

Many organizations already have design guidelines that currently require designers

to manually check their design. Software component vendors may de�ne critics

to add value to the components that they sell and to reduce support costs. For

example, a critic supplied with an ASCII spell checking component might suggest

upgrading to a Unicode version if the architect declares that internationalization is

a goal.

Interactions among stakeholders in the design community can guide the evolution

of critics. If the architect does not understand a particular critic's feedback or

believes it to be incorrect, he or she may send structured email through Argo to

the author of that critic. This opens a dialog between knowledge providers (i.e.,

domain experts) and consumers (i.e., practicing architects) so that the critics may

be revised to be more relevant and timely. In this way critics can be thought of as

pro-active \answers" in an organizational memory (Terveen, Selfridge, and Long,

1993; Ackerman and McDonald, 1996). Possible improvements to Argo's support

for organizational memory include associating multiple experts with each critic,

prioritizing experts based on organizational distance, and tracking email dialogs so

that requests for changes are not forgotten.

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 9

Table 1. Selected Argo Architectural Critics

Name of Critic Explanation of Problem

Critic Type Decision Category

Missing Memory Rqmts The memory required to run this component
Completeness Machine Resources has not been speci�ed.

Component Choice There are other components that could \�t" in
Alternative Component Selection place of what you have: list of components.

Too Many Components There are too many components at the same level
Evolvability Topology of decomposition to be easily understood.

Hard Combination to Test If you need to use these components together,

Organizational Component Selection please make arrangements with the testing manager.

Generator Limitation The default code generator cannot make
Tool Component Selection full use of this component.

Not Enough Reusable Components The fraction of components marked as being

Consistency Reuse reusable is below your stated goals.

Avoid Overlapping Nodes Overlapping nodes does not have any meaning in
Presentation Readability this notation and obscures node labels.

Portability Questionable Your colleague, name of person, had di�culty
Experiential Portability using this component under name of OS.

3.2. Criticism Control Mechanisms

Formalizing the analyses and rules of thumb used by practicing software architects

could produce hundreds of critics. To provide the architect with a usable amount of

information, a subset of applicable critics must be selected for execution at any given

time. Critics must be controlled so as to make e�cient use of machine resources,

but our primary focus is on e�ective interaction with the architect.

Criticism control mechanisms are predicates used to limit execution of critics to

when they are relevant and timely to design decisions being considered by the ar-

chitect. For example, critics related to readability should not be active when the

architect is trying to concentrate on machine resource utilization. Computing rele-

vance and timeliness separately from critic predicates allows critics to focus entirely

on identifying problematic conditions in the product (i.e., the partial architecture)

while leaving cognitive design process issues to the criticism control mechanisms.

This separation of concerns also makes it possible to add value to existing critics

by de�ning new control mechanisms.

3.3. The \To Do" List

Design feedback from large numbers of critics must be managed so as not to over-

whelm or distract the architect. The \to do" list user interface (Figure 4) presents

10 ROBBINS, HILBERT, AND REDMILES

Figure 4. The architect's \to do" list.

design feedback to the architect in a non-disruptive way. When a \to do" item is

added to the list, the architect may act on it immediately, or may continue manip-

ulating the design uninterrupted. \To do" items come from several sources: critics

post items presenting their analyses, the process model posts items to remind the

architect to �nish tasks that are in progress, and the architect may post items as

reminders to return to deferred design tasks. Architects may address items in any

order. Tabs on the \to do" list �lter items into categories.

Each \to do" item is tied into the design context in which it was generated. That

context includes the state of the design, background knowledge about the domain,

and experts to contact within the design community. When the architect selects

an item from the upper pane of the \To Do List" window, the lower pane displays

details about the open design issue and possible resolutions. Double-clicking on an

item highlights the associated (or \o�ending") architectural elements in all visible

design perspectives. Once an item is selected, the architect may manipulate the

critic that produced that item, send email to its author, or follow hyperlinks to

background information.

3.4. Design Perspectives

A design perspective de�nes a projection (or subgraph) of the design materials

and relationships that represent a software architecture. Perspectives are chosen to

present only architectural elements relevant to a limited set of related design issues.

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 11

Figure 3 shows three perspectives on a system modeled in Argo. The system

shown is a simple video game called KLAX
1
in which falling, colored tiles must be

arranged in rows and columns. In the Component{Component perspective, nodes

represent software components and connectors, while arcs represent communication

pathways. Small circles on the components represent the communication ports

of each component. The Resource{Component perspective hierarchically groups

modules into operating system threads and processes. The Classes perspective

maps conceptual components to classes in the hierarchy of programming language

classes that implement them.

3.5. Process Model

Argo uses a process model to support architects in carrying out design processes.

Design processes are di�cult to state prescriptively because they are exploratory,

tend to be driven by exceptions, and often change when new requirements, con-

straints, or opportunities are uncovered (Cugola et al., 1995). Rather than address

traditional process modeling concerns (e.g., scheduling and enactment), our ap-

proach focuses on cognitive issues of the design process by annotating each task

with the types of decisions that the architect must consider during that task. We

use a simpli�ed version of the IDEF0 process notation (IFIP, 1993) that models

dependencies between tasks without prescribing a temporal ordering.

To support cognitive needs, Argo must maintain a model of some aspects of the

architect's state of mind. Speci�cally, Argo's decision model lists decision types that

the architect is currently considering. This information is used to control critics

so that they are relevant and timely to the tasks at hand. The primary source

of information used to determine the state of the decision model is decision type

annotations on tasks in the process model. The architect may edit the decision

model directly. Design manipulations performed by the architect can also indicate

which decisions are currently being considered.

Figure 5 shows an example coarse-grained architecture design process model. Two

of the tasks are to choose machine resources (Choose Rsrcs) and to choose reusable

components (Choose Comps). The second task is annotated with the decision type

Reuse. When the architect indicates that he or she is working on choosing reusable

components, these annotations cause Argo to enable critics that support reuse

decisions. The design process model shown in Figure 5 is a fairly simple one, partly

because the C2 style does not impose any explicit process constraints, and partly

because this example does not consider issues of organizational policy. In practice,

the process would be more complex.

3.6. Usage Scenario

In this section we describe how an architect might interact with Argo while working

through several steps in transforming the basic KLAX game (shown in Figure 3)

12 ROBBINS, HILBERT, AND REDMILES

Figure 5. A model of the design process.

into a multi-player spelling game. The basic KLAX game uses sixteen separate

components, including components that generate colored tiles, display those tiles,

and determine when the player has aligned matching tiles. The spelling game

variation will use the same basic architecture with new components to generate

and display letters and to determine when the player has aligned letters to spell a

word.

While working on the architecture of the basic KLAX game, the architect places

the TileArtist component in the architecture. Shortly thereafter, an alternative

critic posts a \to do" item indicating that another component from the company's

library, LetterArtist, de�nes the same interface and should be considered as an

alternative. The architect knows that LetterArtist is not appropriate for basic

KLAX and takes no action, but the suggestion inspires the idea of building a

spelling variation, so he or she leaves the item on the \to do" list. Later, when

basic KLAX is completed, the architect reviews any remaining \to do" items and

is reminded to investigate the spelling variation. He or she replaces TileArtist

with LetterArtist and de�nes new components for NextLetter and Spelling

to replace NextTile and Matching, respectively. While the architect is replacing

these components the architecture is temporarily in an inconsistent state. Critics

that check for consistency between component interfaces may post \to do" items

describing these interface mismatches, but those items are automatically removed

when the new components are connected and their interfaces are fully de�ned.

Adding two new components to the architecture may cause a consistency critic to

�re if the current percentage of reused components falls below stated reuse goals.

Satis�ed with the choice of components and their communication relationships,

the architect uses Argo's process model to decide what to do next. The process

model contains a task for choosing reusable components and a task for allocating

machine resources which depends on its output. At this point the architect decides

to work on machine resource allocation and marks that task as in progress. Doing so

enables critics that support design decisions related to machine resource allocation,

and three new \to do" items are posted indicating that the three new components

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 13

Figure 6. Architect's workspace after modifying KLAX.

have not been allocated to any host or operating system process. The architect

then turns to the Resource{Component design perspective and �nds that the nodes

representing TileArtist, NextTile, and Matching have been removed and new

nodes for LetterArtist, NextLetter, and Spelling have been added but not

connected to any process or host. The architect connects the new components

as the old ones were connected. At this point it occurs to the architect that a

server-side Spelling component might be too slow in a future multi-player product,

so he or she connects Spelling to the game client process instead. By viewing

the Component{Component perspective and Resource{Component perspective the

architect is able to understand interactions between two aspects of the architecture.

Figure 6 shows what the architect would see at this point: two design perspectives

are open and several new potential problems have been reported by critics. The

selected \to do" item arose because the Spelling component requires more memory

than is available.

In this usage scenario the architect has engaged in a constructive dialog with

design critics: critics prompted the architect with new possibilities and pointed

out inconsistencies. The architect used Argo's process model to help decide which

design task to address next, and used two design perspectives to visualize and

manipulate aspects of the architecture relevant to two distinct design issues. These

14 ROBBINS, HILBERT, AND REDMILES

later two aspects of the scenario highlight new facilities of Argo that are not found

in previous work on DODEs.

4. Implementation

This section discusses the implementation of Argo. We base our discussion on two

prototypes: an initial prototype implemented in Smalltalk and the current version

implemented in Java. First we discuss the core elements of our approach: critics,

criticism control mechanisms, perspectives, and processes. We then describe Argo's

own architecture and the representation of architectures being designed with Argo.

4.1. Critics

In Argo, a critic is implemented as a combination of (1) an analysis predicate,

(2) type and decision category attributes for determining relevance, and (3) a \to

do" list item to be given as design feedback. The stored \to do" list item contains

a headline, a description of the issue at hand, contact information for the critic's

author, and a hyperlink to more information. We encode critics as programming

language predicates. Determining which languages are best suited for expressing

critics is a topic for future research. Each critic is associated with one type of

design material and is applied to all instances of that type. Critics may access the

attributes of the design materials they are applied to, and traverse relationships

to other design materials. Critic predicates are written pessimistically: unspeci�ed

design attributes are assumed to have values that cause the critic to �re. Table 2

presents one critic in detail.

Argo provides a critic run-time system that executes critics in a background

thread of control. Critics may be run periodically or be triggered by speci�c archi-

tecture manipulations. During execution a critic applies its analysis predicate to

evaluate the design and posts a copy of its \to do" item, if appropriate. Another

thread of control periodically examines each item on the architect's \to do" list and

removes items that are no longer applicable.

4.2. Criticism Control Mechanisms

Criticism control mechanisms are implemented as predicates that determine if each

critic should be enabled. Argo uses several criticism control mechanisms, any one

of which can disable a critic. In each of the following examples, criticism con-

trol mechanisms decide which critics should be enabled by comparing information

provided by the architect to attributes on the critics. Architects may \hush" indi-

vidual critics, rendering them temporarily disabled, if their feedback is felt to be

inappropriate or too intrusive. This allows architects to defer the issues raised by a

particular critic without risk of leaving the critic disabled inde�nitely. Argo's user

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 15

Table 2. Details of the Invalid Connection critic

Attribute Value

Name Invalid Connection

Design Material Component

Types f Correctness g

Decision Categories f Component Selection, Message Flows g

Hushed False

Smalltalk Predicate [:comp | | invalidServices |

invalidServices := comp inputs , comp outputs

select: [:s | s isSatisfied not].

invalidServices isEmpty not.]

Feedback This component needs the following messages be sent or

received, but they are not present: a list of messages

Author jrobbins@ics.uci.edu

MoreInfo http://www.ics.uci.edu/pub/arch/argo/v05/docs/...

interface allows groups of critics to be enabled or disabled by type. This allows the

architect to control groups of critics easily. Another control mechanism checks the

critic's decision types against those listed in the decision model. This keeps critics

relevant to the tasks at hand.

Criticism control mechanisms normally enhance relevance and timeliness. How-

ever, relevance and timeliness can be reduced if criticism control mechanisms use

incorrect information. For example, if the architect mistakenly indicates that a

given issue is not of interest, then the architect will see no feedback related to that

issue and might mistakenly assume that the architecture has no problems. This

situation can be avoided by hushing critics instead of disabling them and by using

a well designed process that reminds the architect to review all the issues. Argo

advises the architect to check the decision model when the \to do" list becomes

overly full or if too many \to do" items are being suppressed. The number of sup-

pressed \to do" items is computed by occasionally running disabled critics without

presenting their feedback.

4.3. Design Perspectives

In Argo, perspectives are objects that de�ne a subgraph of the design materials in

the current design. Two types of perspectives are de�ned in Argo: predicate and ad-

hoc. Predicate perspectives contain a predicate that selects a subgraph of the design.

Ad-hoc perspectives contain an explicit list of design materials and relationships.

This latter mechanism allows for manual construction of perspectives via a diagram

editor. When a new design material instance is added to the design, predicate

16 ROBBINS, HILBERT, AND REDMILES

perspectives automatically include it if appropriate, whereas ad-hoc perspectives

will only contain the new material if it is explicitly added to that perspective.

4.4. Process Model

Argo's process modeling plug-in provides a simpli�ed process modeling notation

based on IDEF0 (Figure 5). The design process is modeled as a task network,

where each task in the design process works on input produced by upstream tasks

and produces output for use by downstream tasks. No control model is mandated:

tasks can be performed in any order (provided needed inputs are available); tasks

can be repeated; and any number of tasks can be in progress at a given moment.

Each task is marked with a status: future, in progress, or �nished. Each task is

also marked with a list of decision types. Status information is shown graphically

via color in the process diagram. These attributes are used to update the decision

model. When the architect indicates that a task is considered �nished, the design

environment can use this cue to generate additional criticism, perhaps marking the

task as still in progress if there are high priority \to do" items pending.

The process of de�ning and evolving the process (referred to as the meta-process)

is itself a complex, evolutionary task for which architects may need support. The

process model in Argo is �rst-class: it is represented as a connected graph of active

design materials and the architect may de�ne and modify the process model via the

same facilities used to work on architectures. Multiple perspectives may be de�ned

to view the process. Critics may operate on the process model to check that it is

well-formed and guide its construction and modi�cation, e.g., the output of this task

should be used by another task. The same techniques used to control architecture

critics can be used on process critics, including modeling the meta-process so that

process critics will be relevant and timely. While the ability to change the process

gives
exibility to individual architects, process critics can communicate or enforce

external process constraints.

4.5. Design Environment Architecture

Figures 1 and 2 indicate what facilities are available to architects, but they give

little indication of how the design environment is implemented. Janus and similar

systems have tended to have one major software component for each facility. Those

components form a knowledge-rich design environment with tight user interface,

data, and control integration (Thomas and Nejmeh, 1992). Our interest in software

architecture motivated us to seek a more
exible and extensible architecture, while

retaining a fairly high level of integration.

Figure 7 presents Argo's architecture as a virtual machine. The lowest layer

provides domain-neutral infrastructure and user interface components including

support for representing connected graphs, multiple perspectives, the critic run-

time system, \to do" list, and logging facilities. Domain-speci�c plug-ins are built

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 17

Shared SoftArch

Process Plug-in: adds

User’s Active
Design Document

Shared Process
DocumentDocument

SoftArch Plug-in: adds support
control over decision model

Domain-Neutral Kernel: connected graphs, perspectives, rationale log,
critic run-time, "to do" list, decision model, reusable interface elements

for code generation, simulation, ...

Active design documents
store architectures or
reusable design templates
with palettes of active
design materials, critics,
code generation templates,
simulation parameters, etc.

Figure 7. Argo's architecture presented as a virtual machine.

on top of that infrastructure if needed. These plug-ins typically provide pervasive

functionality that cannot be built into any particular design material. For example,

code generation support is useful for all design materials in the software architecture

domain. Most domain-oriented artifacts are stored in \active documents" in the

top layer. These documents are active in that they contain design materials (e.g.,

software components) that carry their own domain knowledge and behavior in the

form of critics, simulation routines, and code generation templates. Documents

may contain palettes of design materials, designs, reusable design templates, process

fragments, or other supporting artifacts.

One advantage of this architecture is that artifacts from various supporting do-

mainsmay be used. Here, a domain is a coherent body of concepts and relationships

found in a given problem area, and a supporting domain is a domain for a problem

area of secondary concern to the designer, but is useful in completing the design

task. For example, a software architect's primary design domain is the construc-

tion of systems from software components, whereas recording and managing design

rational is a domain of concern that is important to architects but secondary to con-

struction. In Argo, plug-ins for software architecture, process modeling, and design

rationale may all be available simultaneously, providing software architects with

�rst-class supporting artifacts for process and rationale. Each supporting artifact

may be manipulated, visualized, and critiqued.

In designing this architecture we shift away from a monolithic, knowledge-rich de-

sign environment that manipulates passive design materials to a modular, domain-

neutral infrastructure that allows the architect to interact with knowledge-rich,

active design materials. The same trend toward distributing knowledge and behav-

ior to the objects of interest can be observed in the general rise of object-oriented

and component-based approaches to software design. Active design materials can

be thought of as �rst-class objects with local attributes and methods. The analysis

predicates of critics can be thought of as methods. Critics that cannot easily be

associated with any one design material may be associated with one or more design

perspectives. For simplicity, Figure 2 presents critics as looking down on the design

from above; a more literal presentation would show critics associated with each

node, looking around at their neighbors.

The advantages of this shift include increased extensibility, scalability, and sepa-

ration of concerns in the design environment, and stronger encapsulation of design

18 ROBBINS, HILBERT, AND REDMILES

materials. Encapsulation is enhanced because attributes needed for analysis can be

made local, or private, to the design materials, thus supporting local name spaces

and data typing conventions. This increases extensibility because each design ma-

terial may be packaged with its own analyses, and thus de�ne its own semantics,

which need not be anticipated by the design environment builder. Scalability in the

number of critics is increased because there is no central repository of critics|critics

simply travel with design materials. Concerns are separated because the design en-

vironment only provides infrastructure to support analyses packaged as critics and

need not perform any analysis itself. All of these advantages support the evolution

of architectures, design environments, and software architecture communities over

time.

E�ective support for diverse design decisions depends on the architect's ability

to obtain and manage large numbers of critics. In the Java version of Argo, design

materials and critics may be dynamically loaded over the Internet. For example, in

a software component marketplace, an architect might download several component

design materials, try them in the current architecture, consider the resulting design

feedback, and make an informed component selection.

5. Cognitive Theories and Extensions to the DODE Approach

Our extensions to previous design environment facilities are motivated by theories

of designers' cognitive needs. Speci�cally, we extend previous design environment

facilities by enhancing support for re
ection-in-action and adding new support for

cognitive needs identi�ed in the theories of opportunistic design and comprehension

and problem solving. These theories identify the cognitive needs of designers and

serve to de�ne requirements on design environments. In the subsections below

we describe how Argo addresses these requirements. Table 3 summarizes Argo's

support for cognitive needs.

5.1. Re
ection-In-Action

5.1.1. Theory

As discussed in Section 2.1, Schoen's theory of re
ection-in-action indicates that

designers iteratively construct, re
ect on, and revise each intermediate, partial

design. Guindon, Krasner, and Curtis note the same e�ect as part of a study of

software developers (Guindon, Krasner, and Curtis, 1987). Calling it \serendipitous

design," they noted that as the developers worked hands-on with the design, their

mental model of the problem situation improved, hence improving their design.

Software architectures are evolutionary artifacts in that they are constructed in-

crementally as the result of many interrelated design decisions made over extended

periods of time. We visualize design as a process in which a path is traced through

a space of branching design alternatives. A particular software architecture can be

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 19

Evaluation during design

Reflection-in-action

Opportunistic design

Timliness

Reminding

Process flexibility

Process guidance

Process visibility

Comp. & problem solving

Multiple perspectives that
match multiple mental models

Diversity of knowledge

Table 3. Argo features and the cognitive theories that they support.

C
ri

ti
cs

L
ow

 b
ar

ri
er

s
to

 a
ut

ho
rs

hi
p

C
on

tin
uo

us
 a

nd
 p

es
si

m
is

tic
K

ep
t r

el
ev

en
t a

nd
 ti

m
el

y
Pr

od
uc

e
fe

ed
ba

ck
 w

ith
 li

nk
s

X

X X

X

X

X

T
o

do
 li

st
Pr

es
en

ts
 f

ee
db

ac
k

R
em

in
de

rs
 to

 o
ne

se
lf

A
llo

w
s

ch
oi

ce
P

ro
ce

ss
 m

od
el

Pr
oc

es
s

ed
iti

ng
Pr

oc
es

s
cr

iti
cs

Pr
oc

es
s

pe
rs

pe
ct

iv
es

D
es

ig
n

pe
rs

pe
ct

iv
es

M
ul

tip
le

, o
ve

rl
ap

pi
ng

C
us

to
m

iz
ab

le
Pr

es
en

ta
tio

n
cr

iti
cs

X

X

X

X

X

X X

X

X

X

X

X X X

Providing missing knowledge

Dividing complexity

thought of as a product of one of the possible paths through this space. Choices

at any point can critically a�ect alternatives available later, and every decision has

the potential of requiring earlier decisions to be reconsidered.

Traditional approaches to software architecture analysis require architects to make

numerous design decisions before feedback is provided. Such analyses evaluate

the products of relatively complete paths through design space, without providing

much guidance at individual decision points. As a result, substantial e�ort may

be wasted building on poor decisions before feedback is available to indicate the

existence of problems, and fewer design alternatives can be explored. Furthermore,

when analysis is performed only after extended design episodes, it may be di�cult

to identify where exactly in the decision path the architect initially went wrong.

20 ROBBINS, HILBERT, AND REDMILES

Diverse analyses are required to support architects in addressing diverse design

issues, such as performance, security, fault-tolerance, and extensibility. Research to

date has produced a diverse set of architectural analysis techniques. They include

static techniques, such as determining deadlock based on communication protocols

between components (Allen and Garlan, 1994) and checking consistency between

architectural re�nements (Moriconi, Qian, and Riemenschneider, 1995), as well as

dynamic techniques, such as architecture simulation (Luckham and Vera, 1995).

The need for diversity in analysis is further driven by the diversity in project

stakeholders and the potentially con
icting opinions of experts in the software ar-

chitecture �eld itself (Garlan, 1995). Curtis, Krasner, and Iscoe note con
icting

requirements (and thus design evaluation criteria) as a major problem for software

development in general (Curtis, Krasner, and Iscoe, 1988). Con
ict will naturally

arise in architecture design, and analysis techniques should be capable of accom-

modating it. Accommodating con
ict in analysis yields more complete support,

whereas forbidding con
ict essentially prevents architects from being presented with

multiple sides of a design issue. Consider architectural styles, which provide design

guidance by suggesting constraints on component and connector topology: a given

architecture may satisfy the rules of several diverse styles simultaneously. Feedback

items related to each of those styles can be useful, even if they contain con
icting

advice.

5.1.2. Support in Argo

Argo supports re
ection-in-action with critics and the \to do" list. Critics deliver

knowledge needed to evaluate design decisions. The \to do" list serves as a knowl-

edge \in-box" by presenting knowledge from various sources. We will soon add

visual indicators to draw the architect's attention to design materials with pend-

ing criticism (Silverman and Mezher, 1992; Terveen, Stolze, Hill, 1995). The \to

do" list and informative assumption (described below) together support decision

making by allowing the architect to browse potential design problems, guideline

violations, and expert opinions.

Existing software analysis techniques are extremely powerful for detecting well-

de�ned properties of completed systems, such as memory utilization and perfor-

mance. These approaches adhere to what we call the authoritative assumption:

they support architectural evaluation by proving the presence or absence of well-

de�ned properties. This allows them to give de�nitive feedback to the architect,

but may limit their application to late in the design process, after the architect has

committed substantial e�ort building on unanalyzed decisions.

Such approaches also tend to use an interaction model that places a substantial

cognitive burden on architects. For example, architects are usually required to know

of the availability of analysis tools, recognize their relevance to particular design

decisions, explicitly invoke them, and relate their output back to the architecture.

This model of interaction draws the architect's attention away from immediate

design goals and toward the steps required to get analytical feedback. Explicit

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 21

invocation of external tools scales well in terms of machine resources, but not in

terms of human cognitive ability. We believe the cognitive burden of interacting

with external tools may be enough to prevent their e�ective use.

Argo follows the DODE tradition in using what we call the informative assump-

tion: architects are ultimately responsible for making design decisions, and analysis

is used to support architects by informing them of potential problems and pending

decisions. Critics are pessimistic: they need not go so far as to prove the presence

of problems; in fact, formal proofs are often not possible, or even meaningful, on

partial architectures.

Heuristic analyses can identify problems involving design details that may not be

explicitly represented in the architecture, either because the model is too abstract,

or because the architecture is only partially speci�ed. Critics can pessimistically

predict problems before they are evident in the partial design, and positively de-

tect problems very quickly after they are evident in the partial design, typically

within seconds of the design manipulation that introduces the problem. Criticism

control mechanisms help trade early detection for relevance to current goals and

concerns. In cases where all relevant design details are speci�ed, critics can produce

authoritative feedback.

Unfortunately, for most design issues, there are inherit trade-o�s that prevent

achieving both informative and authoritative feedback. There will always be a gap

between the making of a decision and the analysis of that decision. That gap allows

the passing of time, expenditure of e�ort, and loss of cognitive context. When one

decision is analyzed in isolation, the gap may be small, but the feedback is at

best informative because that decision interacts with others that have not yet been

made. When analysis is deferred until groups of interrelated decision have all been

made, the gap is necessarily larger, but the feedback may be more authoritative

because more interactions are known.

However, there is a compromise for the informative{vs{authoritative tradeo�:

existing analysis tools can be modi�ed to make pessimistic assumptions in cases

where partial architectures lack information needed for authoritative analysis; and

existing critics can be controlled so as to achieve a certain degree of con�dence

before providing feedback. Alternatively, external batch analysis tools can be paired

with tool critics that remind the architect when those tools would be useful. For

example, a tool critic could watch for modi�cations that a�ect the result of the batch

analysis and check that the architecture is in a state that can be analyzed (i.e., it

has no syntax errors that would prevent that particular analysis), then re-run the

batch tool, and parse its output into \to do" items with links back to the design

context. In this case the critic's knowledge is of tools available in the development

environment and when they are applicable, whereas the tools themselves provide

architectural or domain knowledge.

Reusing existing analysis tools is one way to produce new critics, but we expect

most critics to be written and modi�ed by domain engineers, domain experts, ven-

dors, or practicing architects. Argo's approach helps to ease critic authoring in

that critics are pessimistic, critic authors need not coordinate their activities with

22 ROBBINS, HILBERT, AND REDMILES

other authors to avoid giving con
icting advice, and critics need not consider rel-

evance and timeliness. Argo's infrastructure eases critic authoring by providing a

framework for implementing critics, a user interface for managing critics and their

feedback, and templates for critics and their \More Info" web pages.

5.2. Opportunistic Design

5.2.1. Theory

It is customary to think of solutions to design problems in terms of a hierarchical

plan. Hierarchical decomposition is a common strategy to cope with complex design

situations. However, in practice, designers have been observed to perform tasks in

an opportunistic order (Hayes-Roth and Hayes-Roth, 1979; Guindon, Krasner, and

Curtis, 1987; Visser, 1990). The cognitive theory of opportunistic design explains

that although designers plan and describe their work in an ordered, hierarchical

fashion, in actuality, they choose successive tasks based on the criteria of cognitive

cost. Simply stated, designers do not follow even their own plans in order, but

choose steps that are mentally least expensive among alternatives.

The cognitive cost of a task depends on the background knowledge of designers,

accessibility of pertinent information, and complexity of the task. Designers' back-

ground knowledge includes their design strategies or schemas (Soloway et al., 1988).

If they are lacking knowledge about how to structure a solution or proceed with

a particular task, they are likely to delay this task. Accessibility of information

may also cause a deviation in planned order. If designers must search for informa-

tion needed to complete a task, that task might be deferred. Complexity of a task

roughly corresponds to the number of smaller tasks that comprise it.

Priority or importance of a step is the primary factor that supersedes the least cost

criteria. Priority or importance may be set by external forces, e.g., an organizational

goal or a contract. Designers may also set their own priorities. In some observations,

designers placed a high priority on overlooked steps or errors (Visser, 1990).

Thus, the theory of opportunistic design outlines a \natural" design process in

which designers choose their next steps to minimize cognitive cost. However, there

are inherent dangers in this \natural" design process. Mental context switches

occur when designers change from one task to another. When starting a new step

or revisiting a former one, designers must recall schemas and information needed

for the task that were not kept in mind during the immediately preceding task.

Inconsistencies can evolve undetected. Some requirements may be overlooked or

forgotten as the designer focuses on more engaging ones. E�ciency is lost because

of many context switches. Guindon, Krasner, and Curtis observed the following

di�culties.

The main breakdowns observed are: (1) lack of specialized design schemas;

(2) lack of a meta-schema about the design process leading to poor allocation

of resources to the various design activities; (3) poor prioritization of issues

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 23

leading to poor selection of alternative solutions; (4) di�culty in considering

all the stated or inferred constraints in de�ning a solution; (5) di�culty in

performing mental simulations with many steps or test cases; (6) di�culty

in keeping track and returning to subproblems whose solution has been post-

poned; and (7) di�culty in expanding or merging solutions from individual

subproblems to form a complete solution. (Guindon, Krasner, and Curtis,

1987)

One implication is that designers would bene�t from the use of process modeling.

Common process models support stakeholders in carrying out prescribed activities,

e.g., resolving a bug report. Software process research has focused on developing

process notations and enactment tools that help ensure repeatable execution of

prescribed processes. However, in their focus on repeatable processes, process tools

have tended to be restrictive in their enforcement of process steps.

Design environments can allow the bene�ts of both an opportunistic and a pre-

scribed design process. They should allow, and where possible augment, human

designers' abilities to choose the next design task to be performed. They can help

designers by providing information so they do not make a context switch. Process

support should exhibit the following characteristics to accommodate the real design

process as described by the theory of opportunistic design and address the problems

identi�ed by Guindon, Krasner, and Curtis.

Visibility helps designers orient themselves in the process, thus supporting the

designer in following a prescribed process while indicating opportunities for choice.

The design process model should be able to represent what has been done so far

and what is possible to do next. Visibility enables designers to take a series of

excursions into the design space and re-orient themselves afterwards to continue

the design process.

Flexibility allows designers to deviate from a prescribed sequence and to choose

which goal or problem is most e�ective for them to work on. Designers must be able

to add new goals or otherwise alter the design process as their understanding of the

design situation improves. The process model should serve primarily as a resource

to designers' cognitive design processes and only secondarily as a constraint on

them. Allowing
exibility increases the need for guidance and reminding.

Guidance suggests which of the many possible tasks the designer should perform

next. Opportunistic design indicates that cognitive costs are lower when tasks are

ordered so as to minimize mental context switching. Guidance sensitive to priorities

(e.g., schedule constraints) must also be considered. Guidance can include simple

suggestions and criticisms. It may also include elaborate help, such as explanations

of potential design strategies or arguments about design alternatives.

Reminding helps designers revisit incomplete tasks or overlooked alternatives.

Reminding is most needed when design alternatives are many and when design

processes are complex or driven by exceptions.

Timeliness applies to the delivery of information to designers. If information

and design strategies can be provided to designers in a timely fashion, some plan

deviations and context switches may be avoided. Achieving timeliness depends on

24 ROBBINS, HILBERT, AND REDMILES

anticipating designers' needs. Even an approximate representation of designers'

planned steps can aid in achieving timeliness.

5.2.2. Support in Argo

Motivated by the theory of opportunistic design, we have attempted to move from

prede�ned processes that force a certain ordering of design decisions to
exible

process models with the properties outlined above. We extend previous work in

design environments by introducing an explicit model of the design process with

progress information and a more
exible \to do" list user interface for presenting

design feedback.

Argo's process model supports visibility by displaying the process and the archi-

tect's progress in it. Visibility is further supported by the availability of multiple

perspectives on the process. For example, an architect may choose a perspective

that shows only parts of the process that lead to a certain goal. Furthermore, the

\to do" list presents a list of issues that the architect may consider next.

Several authors have noted that traditional, sequential work-
ow systems do not

adequately support
exibility and proposed the use of constraint-based process

models (Dourish et al., 1996; Glance, Pagani, and Pereschi, 1996). In Argo,
ex-

ibility is allowed by the simple fact that Argo does not use the process model to

constrain the architect's actions: the architect may address any \to do" item or

perform any design manipulation at any time. Furthermore,
exibility is supported

by the architect's ability to modify the process model to better represent their

mental model of the design process. Process critics, process perspectives, and a

meta-process all support the architect in devising a good design in the process

domain.

In the current version of Argo, guidance is provided only implicitly by the layout

of the process model and the prioritization of the \to do" items. However, the

theory of opportunistic design suggests that guidance should be based, in part, on

the mental context required to perform each task. Pending \to do" items could be

prioritized based on a rough estimate of the cognitive cost of addressing them.

The \to do" list and process model together support reminding by showing the

issues that are yet to be addressed. The \to do" list reminds the architect of issues

that can be addressed immediately while the process model shows tasks that must

be addressed eventually. Critics and \to do" items remind the architect of issues

that need to be reconsidered as problems arise. Beyond the knowledge contained in

the critics and the process model, the architect can also create \to do" items that

contain arbitrary text and links as personal reminders.

The continuous application of critics enables Argo to provide timely feedback.

Criticism control mechanisms help make continuous critiquing practical and re-

duce distractions (i.e., unneeded context switches) due to irrelevant feedback. In

addition to improving design decisions, timely feedback helps the architect make

timely process decisions, e.g., \is this design excursion complete?" and \does a past

decision need reconsideration?"

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 25

5.3. Comprehension and Problem Solving

5.3.1. Theory

The theory of comprehension and problem solving observes that designers must

bridge a gap between their mental model of the problem or situation and the for-

mal model of a solution or system (Kintsch and Greeno, 1985; Fischer, 1987). The

situation model consists of designers' background knowledge and problem-solving

strategies related to the current problem or design situation. The system model

consists of designers' knowledge of an appropriate formal description. Problem

solving or design proceeds through successive re�nements of the mapping between

elements in the design situation and elements in the formal description. Succes-

sive re�nements are equated with increased comprehension, hence the name of the

theory.

In the domain of software, designers must map a problem design situation onto

a formal speci�cation or programming language (Pennington, 1987; Soloway and

Ehrlich, 1984). In this domain, the situation model consists of knowledge of the

application domain and programming plans or design strategies for mapping ap-

propriate elements of the domain into a formal description. The system model

consists of knowledge of the speci�cation or programming language's syntax and

semantics. Programming plans or design strategies enable designers to successively

decompose the design situation, identify essential elements and relationships, and

compose these elements and relationships into elements of a solution. At successive

steps, designers can acquire new information about the situation model or about

the system model.

Pennington observed that programmers bene�ted from multiple representations

of their problem and iterative solutions (Pennington, 1987). Namely multiple rep-

resentations such as program module decomposition, state, and data
ow, enabled

programmers to better identify elements and relationships in the problem and so-

lution and, thus, more readily to create a mapping between their situation models

and working system models. Kintsch and Greeno's research indicated that familiar

aspects of a situation model improved designers' abilities to formulate solutions

(Kintsch and Greeno, 1985). These two results were applied and extended in Red-

miles' research on programmers' behavior, where again multiple representations

supported programmers' comprehension and problem solving when working from

examples (Redmiles, 1993).

Dividing the complexity of the design into multiple perspectives allows each per-

spective to be simpler than the overall design. Moreover, separating concerns into

perspectives allows information relevant to certain related issues to be presented

together in an appropriate notation (Robbins et al., 1996). Design perspectives

may overlap: individual design materials may appear in multiple perspectives. Co-

ordination among design perspectives ensures that materials and relationships pre-

sented in multiple perspectives may be consistently viewed and manipulated in any

of those perspectives. Overlapping, coordinated perspectives aid understanding of

26 ROBBINS, HILBERT, AND REDMILES

new perspectives because new design materials are shown in relationship to familiar

ones (Redmiles, 1993).

Good designs usually have organizing structures that allow designers to locate

design details. However, in complex designs the expectation of a single unifying

structure is a naive one. In fact, complex software system development is driven by a

multitude of forces: human stakeholders in the process and product, functional and

non-functional requirements, and low-level implementation constraints. Alternative

decompositions of the same complex design can support the organizing structures

that arise from these forces and the di�erent mental models of stakeholders with

di�ering backgrounds and interests. Using diverse organizing structures supports

communication among stakeholders with diverse backgrounds and mental models

which is key to developing complex systems that are robust and useful.

It is our contention that no �xed set of perspectives is appropriate for every possi-

ble design; instead perspective views should emphasize what is currently important

in the project. When new issues arise in the design, it may be appropriate to use

a new perspective on the design to address them. While we emphasize the evolu-

tionary character of design perspectives, an initial set of useful, domain-oriented

perspectives can often be identi�ed ahead of time (Fischer et al., 1994).

5.3.2. Support in Argo

Multiple, overlapping design perspectives in Argo allow for improved comprehen-

sion and problem solving through the decomposition of complexity, the leveraging

of the familiar to comprehend the unfamiliar, and the use of notations appropriate

to multiple stakeholders' interests. Supporting the mental models of a particular

domain must be done by domain engineers, practicing architects, and other stake-

holders who apply Argo to a speci�c domain. Architects and other stakeholders may

de�ne their own perspectives in the course of design. Presentation and evolvability

critics advise architects in de�ning and using perspectives.

Soni, Nord, and Hofmeister identify four architectural views: (1) conceptual soft-

ware architecture describes major design elements and their relationships; (2) mod-

ular architecture describes the decomposition of the system into programming lan-

guage modules; (3) execution architecture describes the dynamic structure of the

system; and (4) code architecture describes the way that source code and other ar-

tifacts are organized in the development environment (Soni, Nord, and Hofmeister,

1995). Their experience indicates that separating out the concerns of each view

leads to an overall architecture that is more understandable and reusable.

The 4+1 View Model (Kruchten, 1995) consists of four main views: (1) the log-

ical view describes key abstractions (classes) and their relationships, e.g., is a and

instantiates; (2) the process view describes software components, how they are

grouped into operating system processes, and how those processes communicate;

(3) the development view describes source code modules and their dependencies;

(4) the physical view describes how the software will be distributed among proces-

sors during execution. These four views are supplemented with scenarios and use

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 27

cases that describe essential requirements and help relate elements of the various

views to each other. The views provide a well-de�ned model of the system, but

more importantly they identify and separate major concerns in software develop-

ment. The Uni�ed Modeling Language (UML) also uses multiple perspectives to

visualize various aspects of a design (Fowler and Scott, 1997). In demonstrating

Argo, we chose perspectives similar to those described in these approaches; how-

ever, we believe that the choice of perspectives depends on the type of software

being built and the tasks and concerns of design stakeholders.

Argo supports multiple, coordinated perspectives with customization. In addi-

tion to the perspectives described in this paper, Argo allows for the construction

of new perspectives and their integration with existing perspectives. Architects

who are given a �xed set of formal notations often revert to informal drawings

when those notations are not applicable (Soni, Nord, and Hofmeister, 1995). One

goal of Argo is to allow for the evolution of new notations as new needs are rec-

ognized. In addition to the structured graphics representing the architecture and

process, we allow architects to annotate perspectives with arbitrary, unstructured

graphics (as demonstrated in Figure 3). Customizable presentation graphics are

needed because the unifying structures of the system under construction must be

communicated convincingly to other architects and system implementors. To be

convincing, the style of presentation must �t the professional norms of the devel-

opment organization: it should look like a presentation, not an architect's scratch

pad. Furthermore, ad-hoc annotations that are found to be useful can be incremen-

tally formalized and incorporated into the notations of future designs (Shipman and

McCall, 1994). We expect that Argo's low barrier to customization will encourage

evolution from unstructured notations to structured ones as recurring formalization

needs are identi�ed.

6. Evaluation

The preceding section has provided theoretical evaluation of our extensions to the

DODE approach. Also, the implementation of Argo described in Section 4 provides

a proof-of-concept that many of the desired features for Argo can be realized. This

section outlines our plans to further evaluate Argo as a working tool. Argo's ar-

chitecture and infrastructure can be evaluated in terms of how well they support

construction of design environments in new domains. Argo's support for cognitive

needs can be evaluated by measuring qualities of design processes and products.

6.1. Application to New Domains

The process of applying Argo to a new domain consists of de�ning new design

materials with critics, a design process, and design perspectives. Below we describe

our experience in carrying out these tasks for three domains.

28 ROBBINS, HILBERT, AND REDMILES

In the domain of C2-style software architectures, there are two basic design ma-

terials: software components and connectors. The basic relationship between these

materials describes how they communicate. This basic model was extended to in-

clude design materials for operating system threads, operating system processes,

and source code modules. We rapidly authored approximately twenty critics that

check for completeness and consistency of the representation and adherence to

published C2 style guidelines (Taylor et al., 1996). The number of needed critics

is small because the C2 style addresses only system topology and simple commu-

nication patterns. The C2 design process started with tasks to create each of the

design material types, and was re�ned by splitting activities based on possible de-

sign material attributes, e.g., reused components vs. new components. We started

with two perspectives discussed in previous work on C2, conceptual and implemen-

tation, and later included a perspective to visualize relationships between software

components and the program modules that implement them.

We have also adapted the Argo infrastructure to implement a design environment

for object-oriented design that supports a subset of the Object Modeling Technique

(Rumbaugh et al., 1991). Since this domain is well de�ned and described in a sin-

gle book, it was straightforward to identify the design materials, relationships,

graphical notations, and perspectives. Our OMT subset includes the object model,

behavioral model, and information model, but excludes the more advanced fea-

tures of each. A core set of ten critics that address correctness and completeness

of the design was also straightforward to implement, e.g., an abstract class with

no subclasses indicates an incomplete design. Additional critics were inspired by

a book on OO design heuristics (Riel, 1996), e.g., a base class should not make

direct references to its subclasses because that means that adding new subclasses

requires modi�cations to the base class. Some of these heuristics were more di�cult

to specify as critics because they rely on information not present in the represen-

tation, e.g., semantically related data and behavior should be kept together. In

this example, an authoritative answer cannot be given because the OMT design

representation does not contain enough semantic information; however, critics may

apply pessimistic heuristics to identify when this issue might be a problem. The

provided process and perspectives collected various process fragments described in

these two books.

We have begun to apply Argo to software requirements speci�cations using the

CoRE methodology (Faulk et al., 1992) in the avionics application domain. CoRE

is based on the SCR requirements methodology (Henninger, 1980) with extensions

that deal with the modular decomposition of the requirements document. As with

OMT, existing documents describe the design materials, standard notations, and

analyses. Existing tools cover essentially all analyses that can be performed on the

requirement speci�cation without considering the application domain, e.g., iden-

tifying non-deterministic transitions in a mode-transition table. In implementing

a CoRE design environment we will demonstrate added value over existing tools

by integrating analysis more tightly with the cognitive process of devising a spec-

i�cation, and by providing heuristics to support modularization of requirements

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 29

documents in the avionics domain, e.g., autopilot control modes are largely inde-

pendent of cockpit display modes and should be speci�ed in separate requirements

modules, however there should be certain constraints between the two. To date

we have implemented twenty critics that check correctness and completeness of

CoRE requirements speci�cations and integrated them into an independently de-

veloped requirements editing tool. Doing so has given us additional con�dence in

our critiquing infrastructure.

Argo's architecture and infrastructure have provided satisfactory support for the

initial implementations of domain-oriented design environments in three domains.

We plan to evaluate how well our infrastructure extends in three dimensions:

(1) larger domains with more critics and more complex designs and processes,

(2) addition of new domain-oriented plug-ins (e.g., design rationale), and (3) use of

the infrastructure by people outside of our research group (e.g., an avionics software

development group).

6.2. Evaluating Cognitive Support

To evaluate Argo's support for the cognitive needs of designers, user testing will

focus on how Argo a�ects the productivity of the designer and the quality of the

resulting product. Our support for re
ection-in-action should increase productiv-

ity by decreasing time spent reworking design decisions, lead to better designs in

cases where critics provide knowledge that the designer lacks, shorten the lifespan

of errors, reduce the number of missing design attributes, and strengthen the de-

signer's con�dence in the �nal design because more issues will have been raised and

addressed. We expect our support for opportunistic design will allow designers to

rely less on mental or paper notes, and to make better process choices. Comprehen-

sion of a sample design should increase when the designer's mental models match

one or more design perspectives. Some experimental data can be automatically col-

lected, e.g., the lifespan of errors, while others will rely on human observation and

interviews. Experimental subjects will use Argo with all features enabled, while

control subjects will use Argo with some features disabled. We plan to evaluate the

resulting designs with the help of blind judges, as described by Murray (Murray,

1991). Tests that measure our hypotheses will indicate the degree to which identi-

�ed cognitive needs are supported by Argo's features, and thereby suggest weights

for the associations in Table 3.

A related task is devising a methodology for on-going evaluation of the quality of

the knowledge provided by critics, the guidance contained in process models, and

the mental models suggested by perspectives. This methodology should support

on-going maintenance of the design environment and periodic reorganization and

\reseeding" of domain knowledge (Fischer et al., 1994). Structured email between

designers and knowledge providers is one source of data for this evaluation. We are

also investigating event monitoring techniques that capture data to help evaluate

how well provided knowledge impacts actual usage. Examples of quantities that

could be automatically collected include the number of critics that �re, how many

30 ROBBINS, HILBERT, AND REDMILES

\to do" items the designer views, and how many errors are �xed as a result of

viewing feedback from critics.

A recent evaluation of VDDE (Voice Dialog Design Environment) raised several

questions about the character of the impact of design critics (Sumner, Bonnardel,

and Kallak, 1997). The study found that designers preempted critical feedback by

anticipating criticisms and avoiding errors that the critics could identify. Designers

assessed the relevance of each criticism before taking action, and in cases where

experienced designers disagreed with criticism they usually added design rationale

describing their decision. Sumner, Bonnardel, and Kallak suggest that evaluation of

critiquing systems should explicitly consider designers of di�ering skill levels. They

further suggest that future critiquing systems use alternative interface metaphors

that users will perceive as cooperative rather than adversarial. In our own exper-

iments we plan to group subjects by experience and watch closely for anticipation

of criticism.

7. Conclusions and Future Work

Designing a complex system is a cognitively challenging task; thus, designers need

cognitive support to create good designs. In this paper we have presented the

architecture and facilities of Argo, our software architecture design environment.

Argo's architecture is motivated by the desire for reuse and extensibility. Argo's

facilities are motivated by the observed cognitive needs of designers. The architec-

ture separates domain-neutral code from domain-oriented code and active design

materials. The facilities extend previous work in design environments by enhancing

support for re
ection-in-action, and adding new support for opportunistic design,

and comprehension and problem solving.

In future work, we will continue exploring the relationship between cognitive the-

ories and tool support. Further identi�cation of the cognitive needs of designers

will lead to new design environment facilities to support those needs. Also, we will

seek ways to better support the needs that we have identi�ed in this paper, e.g., a

process model that approximates the cognitive cost of switching design tasks. Fur-

thermore, we will investigate ways of better supporting and using design rationale.

For example, the architect's interactions with the \to do" list is a potentially rich

source of data for design rationale: items are placed on the list to identify open

issues, and removed from the list as those issues are resolved. Design rationale is

an important part of design context and \to do" items should reference relevant

past items when possible.

Our current prototype of Argo is robust enough for experimental usage. It is our

goal to develop and distribute a reusable design environment infrastructure that

others may apply to new application domains. Successful use of our infrastructure

by others will serve to inform and evaluate our approach. A Java version of Argo

with documentation, source code, and examples is available from the authors.

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 31

Acknowledgments

The authors would like to thank Gerhard Fischer (CU Boulder), David Morley

(Rockwell International), and Peyman Oreizy, Nenad Medvidovic, the other mem-

bers of the Chiron research team at UCI, and the anonymous reviewers.

E�ort sponsored by the Defense Advanced Research Projects Agency, and Air

Force Research Laboratory, Air Force Materiel Command, USAF, under agree-

ment number F30602-97-2-0021 and F30602-94-C-0218, and by the National Sci-

ence Foundation under Contract Number CCR-9624846. Additional support is

provided by Rockwell International. The U.S. Government is authorized to repro-

duce and distribute reprints for Governmental purposes notwithstanding any copy-

right annotation thereon. The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily representing the o�cial

policies or endorsements, either expressed or implied, of the Defense Advanced Re-

search Projects Agency, Air Force Research Laboratory or the U.S. Government.

Approved for Public Release | Distribution Unlimited.

Notes

1. KLAX is a trademark of Atari Games.

References

Ackerman, M. S. and McDonald, D. W. 1996. Answer Garden 2: Merging Organizational Mem-
ory with Collaborative Help. Proc. ACM Conf. on Computer Supported Cooperative Work

(CSCW'1996). pp. 97{105.

Abowd, G., Allen, R., and Garlan, D. 1993. Using Style to Understand Descriptions of Software

Architecture. SIGSOFT Software Eng. Notes. vol. 18, no. 5. pp. 9{20.
Allen, G. and Garlan, D. 1994. Beyond De�nition/Use: Architectural Interconnection. Workshop
on Interface De�nition Languages, published in SIGPLAN Notices. vol. 29, no. 8. pp. 35{45.

Batory, D. and O'Malley, S. 1992. The Design and Implementation of Hierarchical Software
Systems with Reusable Components. ACM Trans. Software Eng. and Methodology. vol. 1, no.
4. pp. 355{398.

Benner, K. M. 1996. Addressing Complexity, Coordination, and Automation in Software Devel-
opment with the KBSA/ADM. Proc. 11th Knowledge-Based Software Eng. Conf. Syracuse,
NY. pp. 73{83.

Cugola, G., Di Nitto, E., Ghezzi, C., and Mantione, M. 1995. How to Deal with DeviationsDuring
Process Model Enactment. Proc. 1995 Int. Conf. on Software Eng. (ICSE'95). Seattle, WA,

April 23-30, 1995. pp. 265{273.
Curtis, W., Krasner, H., and Iscoe, N. 1988. A Field Study of the Software Design Process for
Large Systems. Comm. ACM. vol. 31, no. 11. pp. 1268{1287.

Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., Zbyslaw, A. 1996. Free
ow: Mediating
Between Representations and Action in Work
ow Systems. Proc. ACM Conf. on Computer

Supported Cooperative Work (CSCW'96). Cambridge, MA. pp. 190{198.
Engelbart, D. 1988. A Conceptual Framework for the Augmentation of Man's Intellect. In: Greif,
I., ed. Computer-Supported Cooperative Work: A Book of Readings. San Mateo, CA: Morgan
Kaufmann Publishers, Inc. pp. 35{66.

32 ROBBINS, HILBERT, AND REDMILES

Engelbart, D. 1995. Toward Augmenting the Human Intellect and Boosting our Collective I.Q.
Comm. ACM. vol. 38, no. 8. pp. 30{33.

Faulk, S., Bracket, J., Ward, P., Kirby, Jr., J. 1992. The CoRE Method for Real-Time Require-
ments. IEEE Software. vol. 9, no. 9. pp. 22{33.

Fischer, G. 1987. Cognitive View of Reuse and Redesign. IEEE Software, Special Issue on
Reusability. vol. 4, no. 4. pp. 60{72.

Fischer, G. 1994. Domain-Oriented Design Environments. Journal of Automated Software Eng.
vol. 1, no. 2. pp. 177{203.

Fischer, G., Girgensohn, A., Nakakoji, K., and Redmiles, D. 1992. Supporting Software Designers
with Integrated Domain-Oriented Design Environments. IEEE Trans. on Software Eng. vol.
18, no. 6. pp. 511{522.

Fischer, G. and Lemke, A. C. 1988. Construction Kits and Design Environments: Steps Toward

Human Problem-Domain Communication. Human-Computer Interaction. vol. 3, no. 3. pp.
179{222.

Fischer, G., McCall, R., Ostwald, J., Reeves, B., and Shipman, F. 1994. Seeding, evolutionary
growth and reseeding: supporting the incremental development of design environments. Human
Factors in Computing Systems, CHI '94 Conf. Proc. Boston, MA. pp. 292{298.

Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., and Sumner, T. 1993. Embedding Computer-
Based Critics in the Contexts of Design. Human Factors in Computing Systems, INTERCHI

'93, Conf. Proc. Amsterdam, The Netherlands. pp. 157{164.

Fowler, M. and Scott, K. 1997. UML Distilled: Applying the Standard Object Modeling Language.

Addison-Wesley: Reading, MA.

Gantt, M. and Nardi, B. A. 1992. Gardeners and gurus: patterns of cooperation among CAD

users. Human Factors in Computing Systems, CHI'92 Conf. Proc. pp. 107{117.

Garlan, D., Ed. 1995. Proc. First Int. Workshop on Architecture for Software Systems. Seattle,

WA.

Garlan, D., Allen, R., and Ockerbloom, J. 1994. Exploiting Style in Architectural Design Envi-

ronments. Proc. Second ACM SIGSOFT Symposium on the Foundations of Software Eng. Los
Angles, CA. vol. 19, no. 5. pp. 175{188.

Garlan, D. and Shaw, M. 1993. An Introduction to Software Architecture: Advances in Software

Engineering and Knowledge Engineering, volume I. World Scienti�c Publishing.

Glance, N. S., Pagani, D. S., and Pereschi, R. 1996. Generalized Process Structure Grammars

(GPSG) for Flexible Representations of Work. Proc. ACM Conf. on Computer Supported
Cooperative Work (CSCW'96). Cambridge, MA. pp. 180{189.

Green, C., Luchham, D., Balzer, R., Cheatham, T., and Rich, C. 1983. Report on a Knowledge-
Based Software Assistant. RADC TR 83{195, Rome Laboratory.

Guindon, R. 1992. Requirements and Design of DesignVision, an Object-Oriented Graphical
Interface to an Intelligent Software Design Assistant. Human Factors in Computing Systems,
CHI '92 Conf. Proc. pp. 499{506.

Guindon, R., Krasner, H., and Curtis, W. 1987. Breakdown and Processes During Early Activities

of Software Design by Professionals. In: Olson, G. M. and Sheppard S., eds. Empirical Studies
of Programmers: Second Workshop. Norwood, NJ: Ablex Publishing Corporation. pp. 65{82.

Hayes-Roth, B. and Hayes-Roth, F. 1979. A Cognitive Model of Planning. Cognitive Science.
vol. 3, no. 4. pp. 275{310.

Henninger, K. L. 1980. Specifying Software Requirements for Complex Systems: New Techniques

and Their Application. IEEE Trans. Software Eng. vol. 6, no. 1. pp. 2{14.

Int. Federation for Information Processing (IFIP). 1993. Integration De�nition for Function

Modeling (IDEF0). Draft Federal Information Processing Standards Publication 183.

Kintsch, W. and Greeno, J. G. 1985. Understanding and Solving Word Arithmetic Problems.

Psychological Rev. vol. 92. pp. 109{129.

Kruchten, P. 1995. The 4+1 View Model of Architecture. IEEE Software. vol. 12, no. 11. pp.

42{50.

Lemke, A. C. and Fischer, G. 1990. A Cooperative Problem Solving System for User Interface

Design. Proc. AAAI-90, Eighth National Conf. on Arti�cial Intelligence. Cambridge, MA. pp.
479{484.

EXTENDING DESIGN ENVIRONMENTS TO SOFTWARE ARCHITECTURE DESIGN 33

Lowry, M., Philpot, A., Pressburger, T., and Underwood, I. 1994. A Formal Approach to Domain-
Oriented Software Design Environments. Proc. 9th Knowledge-Based Software Eng. Conf.
Monterey, CA. pp. 48{57.

Luckham, D. C. and Vera, J. 1995. An Event-Based Architecture De�nition Language. IEEE
Trans. Software Eng. vol. 21, no. 9. pp. 717{734.

Medvidovic, N., Oreizy, P., and Taylor, R. N. 1997. Reuse of O�-the-Shelf Components in C2-
Style Architectures. Proc. 1997 Int. Conf. on Software Eng. (ICSE'97). Boston, MA, May
17-23, 1997. pp. 692{700.

Moriconi, M., Qian, X., and Riemenschneider, R. A. 1995. Correct Architecture Re�nement.
IEEE Trans. Software Eng. vol. 21, no. 4, pp. 356{372.

Murray, K. S. 1991. KI: A Tool for Knowledge Integration. Proc. Thirteenth National Conference
on Arti�cial Intelligence (AAAI'91). Portland, OR. vol. 1. pp. 835{842.

Partsch, H. and Steinbruggen, R. 1983. Program transformation systems. ACM Computing

Surveys. vol. 15, no. 3. pp. 199{236.

Pennington, N. 1987. Stimulus Structures and Mental Representations in Expert Comprehension
of Computer Programs. Cognitive Psychology. vol. 19. pp. 295{341.

Perry, D. E. and Wolf, A. L. 1992. Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes. vol. 17, no. 4. pp. 40{52.

Redmiles, D. F. 1993. Reducing the Variability of Programmers' Performance Through Explained
Examples. Human Factors in Computing Systems, INTERCHI '93 Conf. Proc. Amsterdam,

The Netherlands. pp. 67{73.
Rettig, M. 1993. Cooperative Software. Comm. ACM. vol. 36, no. 4. pp. 23{28.

Riel, A. 1996. Object-Oriented Design Heuristics. Addison-Wesley: Reading, MA.

Robbins, J. E., Morley, D. J., Redmiles, D. F., Filatov, V., and Kononov, D. 1996. Visual
Language Features Supporting Human-Human and Human-Computer Communication. Proc.

1996 IEEE Symposium on Visual Languages. pp. 247{254.
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. 1991. Object-Oriented

Modeling and Design. Englewood Cli�s, NJ: Prentice Hall.

Schoen, D. 1983. The Re
ective Practitioner: How Professionals Think in Action. New York:
Basic Books.

Schoen, D. 1992. Designing as Re
ective Conversation with the Materials of a Design Situation.
Knowledge-Based Systems. vol. 5, no. 1. pp. 3{14.

Shipman, F. and McCall, R. 1994. Supporting Knowledge-Base Evolution with Incremental For-
malization. Human Factors in Computing Systems, CHI '94 Conf. Proc. Boston, MA. pp.

285{291.
Silverman, B. and Mezher, T. 1992. Expert critics in engineering design: lessons learned and

research needs. AI Magazine. Spring 1992. pp. 45{62.
Soloway, E. and Ehrlich, K. 1984. Empirical Studies of Programming Knowledge. IEEE Trans.

Software Eng. vol. 10, no. 5. pp. 595{609.
Soloway, E., Pinto, J., Letovsky, S., Littman, D., and Lampert, R. 1988. DesigningDocumentation
to Compensate for Delocalized Plans. Comm. ACM. vol. 31, no. 11. pp. 1259{1267.

Soni, D., Nord, R., and Hofmeister C. 1995. Software Architecture in Industrial Applications.
Int. Conf. Software Eng. 17. Seattle, WA. pp. 196{207.

Sumner, T. 1997. The Cognitive Ergonomics of Knowledge-Based Design Support Systems. Hu-
man Factors in Computing Systems, CHI '97 Conf. Proc. pp. 83{90.

Taylor, R. N., Medvidovic, N., Anderson, K., Whitehead, Jr., E. J., Robbins, J. E., Nies, K. A.,
Oreizy, P., and Dubrow, D. L. 1996. A Component and Message-based Architectural Style for

GUI Software. IEEE Trans. Software Eng. vol. 22, no. 6. pp. 390{406.

Terveen, L. G., Selfridge, P. G., and Long, M. D. 1993. From \Folklore" to \Living Design
Memory." Human Factors in Computing Systems, INTERCHI '93 Conf. Proc. Amsterdam,
The Netherlands. pp. 15{22.

Terveen, L., Stolze, M., and Hill, W. 1995. From \Model World" to \Magic World": Making

Graphical Objects the Medium for Intelligent Design Assistance. SIGCHI Bulletin. vol. 27. no.
4. pp. 31{43.

Thomas, I. and Nejmeh, B. 1992. De�nitions of Tool Integration for Environments. IEEE Soft-
ware. vol. 9, no. 2. pp. 29{35.

34 ROBBINS, HILBERT, AND REDMILES

Visser, W. 1990. More or Less Following a Plan During Design: Opportunistic Deviations in
Speci�cation. Int. J. Man-Machine Studies. pp. 247{278.

Received Date
Accepted Date
Final Manuscript Date

