Extracting Usability Information from User Interface Events
DAVID M. HILBERT AND DAVID F. REDMILES

Department of Information and Computer Science, University of California, Irvine, CA
<{dhilbert, redmiles}@ics.uci.edu>

Modern window-based user interface systems generate user interface events as natural products of

their normal operation. Because such events can be automatically captured and because they indicate

user behavior with respect to an application’s user interface, they have long been regarded as a
potentially fruitful source of information regarding application usage and usability. However, because
user interface events are typically voluminous and rich in detail, automated support is generally
required to extract information at a level of abstraction that is useful to investigators interested in
analyzing application usage or evaluating usability.

This survey examines computer-aided techniques used by HCI practitioners and researchers to extract
usability-related information from user interface events. A framework is presented to help HCI
practitioners and researchers categorize and compare the approaches that have been, or might
fruitfully be, applied to this problem. Because many of the techniques in the research literature have
not been evaluated in practice, this survey provides a conceptual evaluation to help identify some of
the relative merits and drawbacks of the various classes of approaches. Ideas for future research in this
area are also presented.

This survey addresses the following questions: How might user interface events be used in evaluating
usability? How are user interface events related to other forms of usability data? What are the key

challenges faced by investigators wishing to exploit this data? What approaches have been brought to
bear on this problem and how do they compare to one another? What are some of the important open
research questions in this area?

Categories and Subject Descriptors: H.5lBfdrmation Interfaces and Presentation]: User
Interfaces—Eval uation/methodol ogy
General Terms: Human factors, Measurement, Experimentation

Additional Key Words and Phrases: Usability testing, User interface event monitoring, Sequential
data analysis, Human-computer interaction

1. INTRODUCTION automatically captured and because they indicate

User interface events (Ul events) are generated ~ USE' 'behavior with respect to an application’s
as natural products of the normal operation of ~ USEr interface, they have long been regarded as a
window-based user interface systems such as potentllally frwt_ful_ source of |nformat|qr_1
those provided by the Macintosh Operating regarding application usage and usability.
System [Lewis and Stone 1999], Microsoft HOWwever, because user interface events are
Windows [Petzold 1998], the X Window System ~ Pically extremely voluminous and rich in
[Nye and O'Reilly 1992], and the Java Abstraci€tail, automated support is generally required to
Window Toolkit [Zukowski and Loukides 1997]. xtract information at a level of abstraction that
Such events indicate user behavior with respel§ USeful to investigators interested in analyzing
to the components that make up an application@Plication usage or evaluating usability.

user interface (e.g., mouse movements witvhile a number of potentially related techniques
respect to application windows, keyboarchave been applied to the problem of analyzing
presses with respect to application input fieldssequential data in other domains, this paper
mouse clicks with respect to application buttonsgrimarily focuses on techniques that have been
menus, and lists). Because such events can §gplied within the domain of HCI. Providing an

July 30, 1999

Extracting Usability Information from User Interface Events . 2

CONTENTS

1. INTRODUCTION
1.1 Goasand Method
1.2 Comparison Framework
1.3 Organization of the Survey
2. BACKGROUND
2.1 Définitions
2.2 Typesof Usability Evaluation
2.3 Typesof Usability Data
3. THE NATURE OF Ul EVENTS
3.1 Spectrum of HCI Events
3.2 Grammaticd Issuesin Analysis
3.3 Contextua Issuesin Andysis
3.4 Composition of Events
4. COMPARISON OF APPROACHES
4.1 Synchronization and Searching
4.2 Transformation
4.3 Counts and Summary Statistics
4.4 Sequence Detection
4.5 Sequence Comparison
4.6 Seguence Characterization
4.7 Visudization
4.8 Integrated Support
5. DISCUSSION
5.1 Summary of the State of the Art
5.2 Some Anticipated Chdlenges
5.3 Related Work and Future Directions
6. CONCLUSIONS

in-depth treatment of all potentialy related
techniques would necessarily limit the amount of
attention paid to characterizing the approaches
that have in fact been brought to bear on the
specific problems associated with analyzing HCI
events. However, this survey attempts to
characterize Ul events and analysistechniquesin
such a way as to make comparison between
techniques used in HCI and those used in other
domains straightforward.

1.1 Goals and Method

The fundamental goal of this survey is to
construct a framework to help HCI practitioners
and researchers categorize, compare, and
evaluate the relative strengths and limitations of
approaches that have been, or might fruitfully be,
applied to this problem. Because exhaustive
coverage of al existing and potential approaches

is impossible, we attempt to identify key
characteristics of existing approaches that divide
them into more or less natural categories. This
allows classes of systems, not just instances, to
be compared. The hope is that an illuminating
comparison can be conducted at the class level
and that classification of new instances into
existing classes will prove to be unproblematic.

In preparing this survey, we searched the
literature in both academic and professional
computing forums for papers describing
computer-aided techniques for extracting
usability-related information from user interface
events. We selected and analyzed an initial set of
papers to identify key characteristics that
distinguish the approaches applied by various
investigators.

We then constructed a two-dimensional matrix
with instances of existing approaches listed
along one axis and characteristics listed along
the other. This led to an initial classification of
approaches based on clusters of related
attributes. We then iteratively refined the
comparison attributes and classification scheme
based on further exploration of the literature.
The resulting matrix indicates areas in which
further research is needed and suggests
synergistic combinations of currently isolated
capabilities.

Ideally, an empirica evaluation of these
approaches in practice would help elucidate
more precisely the specific types of usability
questions for which each approach is best suited.
However, because many of the approaches have
never been realized beyond the research
prototype stage, little empirical work has been
performed to evaluate their relative strengths and
limitations. This survey attempts to provide a
conceptual evaluation by distinguishing classes
of approaches and illuminating their underlying
nature. As a result, this survey should be
regarded as a guide to understanding the research
literature and not as a guide to selecting an
already implemented approach for use in
practice.

1.2 Comparison Framework

This subsection introduces the high level
categories that have emerged as a result of the
survey. We present the framework in more detail
in Section 4.

July 30, 1999

J D. H. Hilbert and D. F. Redmiles

Techniques for synchronization and search-

ing. These techniques allow user interface
events to be synchronized and cross-indexed
with other sources of data such as video
recordings and coded observation logs. This
allows searches in one medium to locate sup-
plementary information in others. In some

ways, this is the simplest (i.e. most mechani-
cal) technique for exploiting user interface

events in usability evaluation. However, it is,
quite powerful.

Techniques for transforming event streams.
Transformation involves selecting, abstract-
ing, and recoding event streams to facilitate
human and automated analysis (including
counts, summary statistics, pattern detection,
comparison, and characterizatio®g ection
involves separating events and sequences of
interest from the “noise”. Abstraction
involves relating events to higher-level con-
cepts of interest in analysisRecoding
involves generating new event streams based
on the results of selection and abstraction so
that selected and abstracted events can be
subjected to the same types of manual and
automated analysis techniques normally per-
formed on raw event streams.

Techniques for performing counts and sun+
mary statistics. Once user interface events
have been captured, there are a number of
counts and summary statistics that might be
computed to summarize user behavior, for
example, feature use counts, error frequen-
cies, use of the help system, and so forth.
Although most investigators rely on general-

guences for further perusal by the investiga-
tor. Other times the purpose is to
automatically recognize particular sequences
that violate expectations about proper user
interface usage. Finally, in some cases, the
purpose is to perform transformation of the
source sequence by abstracting and recoding
instances of the target sequence into
“abstract” events.

Techniques for comparing sequences. These
techniques help investigators compare
“source” sequences against concrete or
abstractly defined “target” sequences indicat-
ing the extent to which the sequences match
one another. Some techniques attempt to
detect divergence between an abstract model
representing the target sequence and a source
sequence. Others attempt to detect divergence
between a concrete target sequence produced,
for example, by an expert user, and a source
sequence produced by some other user. Some
produce diagnostic measures of distance to
characterize the correspondence between tar-
get and source sequences. Others attempt to
perform the best possible alignment of events
in the target and source sequences and present
the results to investigators in visual form.
Still others use points of deviation between
the target and input sequences to automati-
cally indicate potential usability issues. In all
cases, the purpose is to compare actual
sequences of events against some model or
trace of “ideal” or expected sequences to
identify potential usability issues.

Techniques for characteriziing sequences.

purpose spreadsheets and statistical packages These techniques take “source” sequences as

to provide such functionality, some investiga-
tors have proposed specific “built-in” func-
tions for calculating and reporting this sort of
summary information.

Techniques for detecting sequences. These
techniques allow investigators to identify
occurrences of concrete or abstractly defined
“target” sequences within “source” sequences
of events that may indicate potential usability

input and attempt to construct an abstract
model to summarize, or characterize, interest-
ing sequential features of those sequences.
Some techniques compute probability matri-
ces in order to produce process models with
probabilities associated with transitions. Oth-
ers construct grammatical models or finite
state machines to characterize the grammati-
cal structure of events in the source

issues. In some cases, target sequences areS€quences.

abstractly defined and are supplied by the
developers of the technique. In other cases,
target sequences are more specific to particu-
lar applications and are supplied by the users
of the technique. Sometimes the purpose is to
generate a list of matched source subse-

July 30, 1999

Misualization techniques. These techniques
present the results of transformations and
analyses in forms allowing humans to exploit
their innate visual analysis capabilities to
interpret results. These techniques can be par-
ticularly useful in linking results of analysis

Extracting Usability Information from User Interface Events . 4

back to features of the interface.

+ Integrated evaluation support. Evaluation | Synchronization and searching
environments that facilitate flexible composi-| Transformation
tion of various transformation, analysis, ang

visualization capabilities provide integrated Selection
support. Some environments also provid¢ Abstraction
built-in support for managing domain-spe- Recoding
cific artifacts such as evaluations, subjectq,)
Analysis

tasks, data, and results of analysis.

Figure 1 illustrates how the framework might bq
arranged as a hierarchy. At the highest level, tHe Sequence detection
surveyed techniques are concerned with: Sequence comparison
synchronization and searching, transformatiort,
analysis, visualization, or integrated support} T
Transformation can be achieved through Visualization
selection, abstraction, and recoding. Analysisntegrated support
can be performed using counts and summaly
statistics, = sequence detection, sequen
comparison, and sequence characterization.

Counts and summary statistics

Sequence characterization

[}
Figure 1. Comparison framework.

1.3 Organization of the Survey

The next section establishes background aﬁﬁe
presents definitions of important terms. Thd'uSt
subseque_nt_ section discusses the nature agd BACKGROUND
characteristics of Ul events and provides

examples to illustrate some of the difficultiesThis section serves three purposes. First, it
involved in extracting usability-related establishes working definitions of key terms
information from such events. Section 4 presentsuch as “usability,” “usability evaluation,” and
a comparison of the approaches based on tfigsability data”. Second, it situates observational
framework outlined above. For each class ofisability evaluation within the broader context of
techniques, the following is provided: a briefHCI evaluation approaches, indicating some of
description, examples, related work wherdhe relative strengths and limitations of each.
appropriate, and strengths and limitationsFinally, it isolates user interface events as one of
Section 5 summarizes the most important pointhe many types of data commonly collected in
of the survey and outlines some directions fopbservational usability evaluation, indicating

future research. Section 6 presents conclusionssome of its strengths and limitations relative to
. _other types. The definitions and frameworks
Many of the authors are not explicit regardingyesented here are not new and can be found in

the event representations assumed by the&lfangard HCI texts [Preece et al. 1994; Nielsen
approaches. We assume that Ul events are d3i§g3)]. Those well acquainted with usability,

structures that include attributes indicating alysability evaluation, and user interface event
event type (e.g., MOUSE_PRESSED Or (ata may wish to skip directly to Section 3
KEY_PRESSED), an event target (e.9., an IDyhere the specific nature of user interface events

indicating a particqlar button or text field in. theand the reasons why analysis is complicated are
user interface), a timestamp, and other att”bUt‘?ﬁesented.

including various aspects of the state of input

devices when the event was generated. Howev@rl Definitions

to raise the level of abstraction in our discussiorflUsability” is often thought of as referring to a
we typically represent event streams asingle attribute of a system or device. However,
sequences of letters where each lettdtis more accurately characterized as referring to
corresponds to a more detailed event structure aslarge number of related attributes. Nielsen
described above. When beneficial, and possiblerovidesthefollowing definition [Nielsen 1993]:

provide examples using this notation to
rate how particular approaches operate.

July 30, 1999

D. H. Hilbert and D. F. Redmiles

Usability has multiple components and is
traditionally associated with these five
usability attributes:

Learnability: The system should be easy to
learn so that the user can rapidly start getting
some work done with the system.

Efficiency: The system should be efficient to
use, so that once the user has learned the
system, ahigh level of productivity is possible.

Memorahility: The system should be easy to
remember, so that the casua user is able to
return to the system after some period of not
having used it, without having to learn
everything all over again.

Errors. The system should have a low error
rate, so that users make few errors during the
use of the system, and so that if they do make
errors they can easily recover from them.
Further, catastrophic errors must not occur.

Satisfaction: The system should be pleasant to

use, so that users are subjectively satisfied

when using it; they likeiit.
“Usability evaluation” can be defined as the act
of measuring (or identifying potential issues
affecting) usability attributes of a system or
device with respect to particular users,
performing particular tasks, in particular
contexts. The reason that users, tasks, and
contexts are part of the definition is that the
values of usability attributes can vary depending
on the background knowledge and experience of
users, the tasks for which the system is used, and
the context in which it is used.

“Usability data” is any information that is
useful in measuring (or identifying potential
issues affecting) the usability attributes of a
system under evaluation.

It should be noted that the definition of usability
cited above makes no mention of the particular
purposes for which the system is designed or
used. Thus, asystem may be perfectly usable and
yet not serve the purposes for which it was
designed. Furthermore, a system may not serve
any useful purpose at al (save for providing
subjective satisfaction) and still be regarded as
perfectly usable. Herein lies the distinction
between usability and utility.

Usability and utility are regarded as
subcategories of the more general term
“usefulness” [Grudin 1992]. Utility

July 30, 1999

guestion of whether the functionality of a system
can, in principle, support the needs of users,
while usability is the question of how
satisfactorily users can make use of that
functionality. Thus, system usefulness depends
on both usability and utility.

While this distinction is theoretically clear,
usability evaluations often identify both usability
and utility issues, thus more properly addressing
usefulness. However, to avoid introducing new
terminology, this survey simply assumes that
usability evaluations and usability data can
address questions of utility as well as questions
of usability.

2.2 Types of Usability Evaluation

This section contrasts the different types of
approaches that have been brought to bear in
evaluating usability in HCI.

First, a distinction is commonly drawn between
formative and summative evaluatidrormative
evaluation primarily seeks to provide feedback
to designers to inform and evaluate design
decisions. Summative evaluation primarily
involves making judgements about “completed”
products, to measure improvement over previous
releases or to compare competing products. The
techniques discussed in this survey can be
applied in both sorts of cases.

Another important issue is the more specific
motivation for evaluating. There are a number of
practical motivations for evaluating. For
instance, one may wish to gain insight into the
behavior of a system and its users in actual usage
situations in order to improve usability
(formative) and to validate that usability has
been improved (summative). One may also wish
to gain further insight into users’ needs, desires,
thought processes, and experiences (also
formative and summative). One may wish to
compare design alternatives, for example, to
determine the most efficient interface layout or
the best design representation for some set of
domain concepts (formative). One may wish to
compute usability metrics so that usability goals
can be specified quantitatively and progress
measured, or so that competing products can be
compared (summative). Finally, one may wish to
check for conformance to interface style
guidelines and/or standards (summative). There

is the are also academic motivations, such as the desire

Extracting Usability Information from User Interface Events . 6

Predictive
evaluation

Reasonsfor
evaluating

Observational| Participative
evaluation evaluation

Understand-
ing user

behavior & X X
performance

Understand-
ing user
thoughts &
experience

Comparing
design X X X

aternatives

Computing
usability X X X
metrics

Certifying
conformance X
w/ standards

Table 1: Types of evaluation and reasons for
evaluating.

to discover features of human cognition that
affect user performance and comprehension with
regard to human-computer interfaces (potentially
resulting in formative implications).

There are a number of HCI evaluation
approaches for achieving these goals that fall
into three basic categoriess predictive,
observational, and participative.

Predictive evaluation usualy involves making
predictions about usability attributes based on
psychological modeling techniques (e.g., the
GOMS model [John and Kieras 1996a & 1996b]
or the Cognitive Walkthrough [Lewis et al.
1990]), or based on design reviews performed by
experts equipped with a knowledge of HCI
principles and guidelines and past experience in
design and evaluation (e.g., Heuristic Evaluation
[Nielsen and Mack 1994]). A key strength of
predictive approaches is their ability to produce
results based on non-functioning design artifacts
without requiring the involvement of actual
users.

Observational evaluation involves measuring
usability attributes based on observations of
users actually interacting with prototypes or fully
functioning systems. Observational approaches
can range from formal laboratory experiments to
less formal field studies. A key strength of
observational techniques is that they tend to

uncover aspects of actual user behavior and
performance that are difficult to capture using
other techniques.

Finally, participative evaluation involves
collecting information regarding usability
attributes directly from users based on their
subjective reports. Methods for collecting such

data range from questionnaires and interviews to

more ethnographically inspired approaches
involving joint observer/participant
interpretation of behavior in context. A key
benefit of participative techniques is their ability

to capture aspects of users’ needs, desires,
thought processes, and experiences that are
difficult to obtain otherwise.

In practice, actual evaluations often combine
techniques from multiple approaches. However,
the methods for posing questions and for
collecting, analyzing, and interpreting data vary
from one category to the next. Table 1 provides a
high level summary of the relationship between
types of evaluation and typical reasons for
evaluating. An upper-case ‘X' indicates a strong
relationship. A lower-case ‘X’ indicates a weaker
relationship. An empty cell indicates little or no
relationship.

The approaches surveyed here are primarily
geared toward supporting observational
evaluation, although some provide limited
support for capturing participative data as well.

2.3 Types of Usability Data

Having situated observational usability
evaluation within the broader context of
predictive, observational, and participative

approaches, user interface events can be isolated
as just one of many possible sources of
observational data.

Sweeny and colleagues [Sweeny et al. 1993]
identify a number of indicators that might be
used to measure (or indicate potential issues
affecting) usability attributes:

e On-line behavior/performance; e.g., task
times, percentage of tasks completed, error
rates, duration and frequency of on-line help
usage, range of functions used.

» Off-line behavior (non-verbal): e.g., eye
movements, facial gestures, duration and fre-
guency of off-line documentation usage, off-
line problem solving activity.

July 30, 1999

7 J D. H. Hilbert and D. F. Redmiles

- Survey/ .
Usability Indicators ul Eve_nt Audlo/Vl_deo Post-hoc Useu_’ Questionnaire/ Psychoph_yscal
Recording | Recording | Comments | Interview recording
Test scores
On-line behavior/performance X X
Off-line behavior (non-verbal) X
ICognition/understanding X X X X X
IAttitude/opinion X X X
Stress X

Table 2: Data collection techniques and usability indicators.

« Cognition/understanding: e.g., verbal proto- how these issues manifest themselves in Ul
cols, answers to comprehension questiongvent analysis. We use this discussion to ground
sorting task scores. later discussion and to highlight some of the

questionnaire and interview comments an@pPproaches.

ratings. 3.1 Spectrum of HCI Events

+ Sressanxiety: e.g., galvanic skin responseBefore discussing the specific nature of Ul
(GSR), heart rate (ECG), event-related braigvents, this section introduces the broader
potentials (ERPs), electroencephalogramspectrum of events of interest to researchers and
(EEG), ratings of anxiety. practitioners in HCI. Figure 2, adapted from

Table 2 summarizes the relationship betweefBanderson and Fisher 1994], indicates the

these indicators and various techniques fodurations of different types of HCI events.

collecting observauor)al data. T.hIS table is by N3he horizontal axis is a log scale indicating

means comprehensive and is used only 0

indicate the rather specialized of vent durations in seconds. It ranges from
Pec Y€!qurations of less than one second to durations of
complementary nature of user interface eve

data i b tional luati ul ; ears. The durations of Ul events fall in the

p?oflli dg] Oexsceerl}lgwlton?jatzvaf%? Iog.uantita?i\\// ?;I]y ange of 10 milliseconds to approxi_mately one

characterizing on-line behavior, however thesecond. The range of possible durations for each
’ ' type” of event is between one and two orders of

usefulr]ess of Ul _events in providing dat6\11agnitude, and the ranges of different types of
regarding the remaining indicators has not beeé\/ents overlap one another

demonstrated. However, some investigators have
used Ul events to infer features of usetf we assume that events occur serially, then the
knowledge and understanding [Kay and Thomagossible frequencies of events are constrained by
1995; Guzdial et al. 1993]. the duration of those events. So, by analogy with

the continuous domain (e.g., analog signals),
Many of the surveyed approaches focus on evelich event type will have a characteristic

data exclusively. However, some also combing . ,oncy band associated with it [Sanderson
other sources of data including video recordings, | " Fisher 1994]. Event types of shorter
coded observations, and subjective user reportsy ration. for examble Ul events. can exhibit

3. THE NATURE OF Ul EVENTS much higher frequencies when in sequence, and

) .) thus might be referred to as high-frequency band
This section discusses the nature angyent types. Likewise, event types of longer
characteristics of HCI events in general and Ujuration, such as project events, exhibit much
events specifically. We discuss the grammaticabwer frequencies when in sequence and thus
nature of Ul events including some implicationsmight be referred to as low-frequency band event
on analysis. We also discuss the importance @fpes. Evaluations that attempt to address the
contextual information in interpreting the details of interface design have tended to focus
significance of events. Finally, we present @n high-frequency band event types, whereas
compositional model of Ul events to illustrateresearch on computer supported cooperative

July 30, 1999

Extracting Usability Information from User Interface Events . 8
Ul events
eye movements
gestures, motions
vocalizations
turns
topics
meeting events
operation events
project events Event
11— i soaond
001 .01 1 1. 10 100 1K . 10K 100K 1M, 10M . 100M In seconds
: ' ' | ! (log scale)
1 sec 1 min 1 hour 1 day 1month 1 y'ear
High Frequency Band Events Low Frequency Band Events
(Mostly synchronous interactions) (Many asynchronous interactions)

Figure 2. A spectrum of HCI events. Adapted from [Sanderson and Fisher 1994].

work (CSCW) has tended to focus on mid- to
low-frequency band event types [Sanderson and
Fisher 1994].

Some important properties of HCI events that
emerge from this characterization include the
following:

1. Synchronous vs. Asynchronous Events:
Sequences composed of high-frequency
event types typically occur synchronously.
For example, sequences of Ul events, ges
tures, or conversational turns can usualy be
captured synchronously using a single
recording. However, sequences composed of
lower frequency event types, such as meeting
or project events, may occur asynchronously,
aided, for example, by electronic mail, col-
laborative applications, memos, and letters.
This has important implications on the meth-
ods used to sample, capture, and analyze data,
particularly at lower frequency bands [Sand-
erson and Fisher 1994].

Composition of Events: Events within agiven
frequency band are often composed of events
from higher frequency bands. These same
events typically combine to form events at
lower frequency bands. Sanderson and Fisher
offer this example: a conversationa turn is
typically composed of vocalizations, ges-
tures, and eye movements, and a sequence of
conversational turns may combine to form a

topic under discussion within a meeting
[Sanderson and Fisher 1994]. This composi-
tional structure is also exhibited within fre-
guency bands. For instance, user interactions
with software applications occur and may be
analyzed at multiple levels of abstraction,
where events at each level are composed of
events occurring at lower levels. (See [Hil-
bert et al. 1997] for an early treatment). This
is discussed further below.

Inferences Across Frequency Band Bound-
aries: Low frequency band events do not
directly reveal their composition from higher
frequency events. As aresult, recording only
low frequency events will typically result in
information loss. Likewise, high frequency
events do not, in themselves, reveal how they
combine to form events at lower frequency
bands. As aresult, either low frequency band
events must be recorded in conjunction with
high frequency band events or there must be
some external model (e.g., a grammar) to
describe how high frequency events combine
to form lower frequency events. This too is
discussed further below.

3.2 Grammatical Issues in Analysis

Ul events are often grammatical in structure.
Grammars have been wused in numerous
disciplines to characterize the structure of
sequential data. The main feature of grammars

July 30, 1999

9 J D. H. Hilbert and D. F. Redmiles

that make them useful in this context is their
ability to define equivalence classes of patterns
in terms of rewrite rules. For example, the
following grammar (expressed as a set of rewrite
rules) may be used to capture the ways in which
a user can trigger a print job in a given
application:

PRINT_COMMAND —>
“MOUSE_PRESSED PrintToolbarButton” or
(PRINT_DIALOG_ACTIVATED then
“MOUSE_PRESSED OkButton)

PRINT_DIALOG_ACTIVATED —>
“MOUSE_PRESSED PrintMenultem” or
“KEY_PRESSED Ctrl-P”

Rule 1 simply states that the user can trigger a

print job by either pressing the print toolbar

button (which triggers the job immediately) or
by activating the print dialog and then pressing

the “OK” button. Rule 2 specifies that the prin
dialog may be activated by either selecting th
print menu item in the “File” menu or by

entering a keyboard accelerator, “Ctrl-P”.

ton

to such differences. Unless the data is
transformed based on the above grammar, the
fact that these sequences are semantically
equivalent (in the sense that each indicates a
series of four consecutive print job activations)

will most likely go unrecognized, and even

simple summary statistics such as “# of print

jobs per session” may be difficult to compute.

Techniques for extracting usability-related
information from Ul events should take into
consideration the grammatical relationships
between lower level events and higher level
events of interest.

3.3 Contextual Issues in Analysis

Another set of problems arises in attempting to
interpret the significance of Ul events based only
the information carried within events
g'nemselves. To illustrate the problem more
generally, consider the analogous problem of
interpreting the significance of utterances in
transcripts of natural language conversation.

Let us assume that the lexical elements used hmportant contextual cues are often spread

construct sentences in this language are:

A: indicating “print toolbar button pressed”

B: indicating “print menu item selected”

across multiple utterances or may be missing
from the transcript altogether.

Let us assume we have a transcript of a

C. indicating “print accelerator key entered” conversation that took place between individuals

D: indicating “print dialog okayed”

Then the following “sentences” constructed fro

A and B at a museum. The task is to identify A's

pfavorite paintings based on utterances in the

these elements each indicate a series of fol[@NSCrPt.

consecutive print job activations:

AAAA
CDAAA
ABDBDA
BDCDACD
CDBDCDBD

Example 1: The Persistence of Memory, by
Dali, is one of my favorites”.

In this case, everything we need to know in order
to determine one of As favorite paintings is
contained in a single utterance.

All occurrences of ‘A’ indicate an immediate EXample 2: The Persistence of Memory, by
print job activation while all occurrences of ‘BD’ Dali".

or ‘CD’ indicate a print job activated by using|n this case we need access to prior context. ‘A
the print dialog and then selecting “OK”. is most likely responding to a question posed by

Notice that each of these sequences contains By- Information carried in the question is critical
different number of lexical elements. Some of" INtérpreting the response. For example, the
them have no lexical elements in common (e.gduéstion could have been: “Which is your least
AAAA and CDBDCDBD). The lexical elements favorite painting?”.

occupying the first and last positions differ fromexample 3: “That is one of my favorites”.

one sequence to the next. In short, there are a .

number of salient differences between thesH this case, we need the ability to de-reference
sequences at the lexical level. Techniques f@n indexical. The information carried by the

characterizing sequences are typically sensitii@€ utterances in the transcript, but was clearly
available to the interlocutors at the time of the

July 30, 1999

Extracting Usability Information from User Interface Events . 10

utterance. Such contextual information was

significance to be interpreted.

properly

“there for the asking”, so to speak, and couldometimes critical contextual information is

have been noted had the transcriber been presentilable elsewhere in

the transcript, and

and chosen to do so at the time of the utterancesometimes that information is not available in

Example 4: “That is another one.”

In this case we would need access to both pridot

the transcript, but was available, “for the
asking”, at the time of the utterance, or event, but
afterwards. Therefore, techniques for

context and the ability to de-reference aréxtracting usability-related information from Ul

indexical.

The following examples illustrate analogou

Sevents, and that

events should take into consideration the fact
that context may be spread across multiple
in some cases, important

situations in the interpretation of user interface.,ntextual information may need to be explicitly

events:
Example 1':“mouse_PRESSED PrintToolbarButton”

This event carries with it enough information to
indicate the action the user has performed.

Example 2':*Muse_PRESSED OkButton”

This event does not on its own indicate what
action was performed. As in Example 2 above,
this event indicates a response to some prior
event, for example, a priorMJUSE_PRESSED
PrintMenultem” event.

Example 3':*w Noow oPENED ErrorDialog”

The information needed to interpret the
significance of this event may be available in
prior events, but a more direct way to interpret
its significance would be to query the dialog for
its error message. This is similar to de
referencing an indexical, if we think of the error

dialog as figuratively “pointing at” an error
message that does not actually appear in trb%

event stream.

Example 4’: ‘v noow oPENED ErrorDialog”

captured during data collection if meaningful
interpretation is to be performed.

3.4 Composition of Events

Finally, user interactions may be analyzed at
multiple levels of abstraction. For instance, one
may be interested in analyzing low-level mouse
movement and timing information, or one may
be more interested in higher-level information
regarding the steps taken by users in completing
tasks, such as placing an order or composing a
business letter. Techniques for extracting
usability information from Ul events should be
capable of addressing events at multiple levels of
abstraction.

Figure 3 illustrates a multi-level model of events
originally presented in [Hilbert et al. 1997]. At
the lowest level arphysical events, for example,
fingers depressing keys or a hand moving a
pointing device such as a mousaput device
events, such as key and mouse interrupts, are
nerated by hardware in response to physical
events.Ul events associate input device events
with windows and other interface objects on the
screen. Events at this level include button

Assuming the error message is “Invalidyesses, list and menu selections, focus events in
interpret the significance of this event is not onlyggizing.

found by de-referencing the indexical (the error
message “pointed at” by the dialog) but must b@bstract interaction events are not directly
supplemented by information available in priorgenerated by the user interface system, but may
events. It may also be desirable to querfe computed based on Ul events and other
contextual information stored in user interfac&€ontextual information such as Ul state. Abstract
components to determine the combination ofiteraction events are indicated by recurring,
parameters (specified in a dialog, for examplelfiomatic patterns of Ul events and indicate
that led to this particular error. igher level concepts such as shifts in users’
editing attention or the act of providing values to

The basic insight here is that sometimes agn application by manipulating application
utterance — or a Ul event — does not carmtomponents.

enough information on its own to allow its

July 30, 1999

11 o D. H. Hilbert and D. F. Redmiles

Domain/task-related and Goal/problem-related

Goal/Problem-Related events are at the highest levels. Unlike other
(e.g., placing an order) levels, these events indicate progress in the
user’'s tasks and goals. Inferring these events
Domain/Task-Related based on lower level events can be
(e.g., providing address information) straightforward when the user interface provides
explicit support for structuring tasks or
Abstract Interaction Level indicating goals. For instance, Wizards in
(e.g., providing values in input fields) Microsoft Word“ [Rubin 1999] lead users
Ul Events through a sequence of steps in a predefined task.

The user’s progress can be recognized in terms

(e.g., shifts in input focus, key events) of simple Ul events such as button presses on the

Input Device Events “Next” button. In other cases, inferring task and

(e.g., hardware-generated key or mouse interrupts) goal _re|ated events might require more
) complicated composite event detection. For

Physical Events instance, the goal of placing an order includes

(e.g., fingers pressing keys or hand moving mouse) the task of providing address information. The
task-related event ADDRESS PROVI DED’
may be recognized in terms of
“VALUE_PROVI DED” abstract interaction
Consider the example of a user editing an input ~ €vents occurring within each of the required
field at the top of a form-based interface, then fields in the address section of the form. Finally,
pressing tab repeatedly to edit a field at the in some cases, it may be impossible to infer
bottom of the form. In terms of Ul events, input ~ events at these levels based only on lower level
focus shifted several times between the first and €vents.

last fields. In terms of abstract interaction events, rochnigues for extracting usability-related

the user’s editing attention shifted directly from ; -
' . ; nformation from Ul events should be sensitive
the top field to the bottom field. Notice thatI ! v u v

detecting the occurrence of abstract interactioﬁg0 the fact that user interactions can occur and be
nalyzed at multiple levels of abstraction.
events such as COTr_ED T and y P

“LOST_EDI T” requires the ability to keep track 4. coMPARISON OF APPROACHES

of the last edited component and to notice . o

subsequent editing events in other components,! NS section introduces the approaches that have
been applied to the problem of extracting

Another type of abstract interaction event mighisability-related information from Ul events.
be associated with the act of providing a newhe following subsections discuss the features
value to an application by manipulating usegthat distinguish each class of approaches and
interface components. In the case of a text fielghyrovide examples of some of the approaches in
this would mean that the field had received @ach class. We mention related work where
number of key events, was no longer receivingppropriate and discuss the relative strengths and
key events, and now contains a new value. Thgnitations of each class. Figures 4 through 11
patterns of window system events that indicatgrovide pictorial representations of the key
an abstract interaction event such aseatures underlying each class. Table 3 (located
“VALUE_PROVI DED" will differ from one type at the end of this section) presents a
of interface component to another, and from ongategorization and summary of the features
application to another, but will typically remain belonging to each of the surveyed techniques.
fairly stable within a given application. Notice - .
that detecting the occurrence of an abstraétl Synchronization and Searching
interaction event such a¥ALUE_PROVI DED’ 4.1.1 Purpose
requires the ability to access user interface statéser interface events provide detailed
such as the component value before and afterformation regarding user behavior that can be
editing events. captured, searched, counted, and analyzed using
automated tools. However, it is often difficult to

Figure 3. Levelsof abstraction in user interactions.

July 30, 1999

Extracting Usability Information from User Interface Events . 12

Description: Ul events are synchronized with video
and coded observations. Searches in one medium
are used to locate supplementary information in
others.

Examples: Playback; Microsoft, Apple, and Sun-
Soft Labs; DRUM; MacSHAPA; |-Observe.

Figure 4. Synchronization and Searching

Description: Selection is the process of separating
events of interest from the rest of the event stream.
Recoding is the process of generating a new event
stream based on selected events.

Examples: Incident Monitoring; CHIME; Hawk;
MacSHAPA,; User-Identified Cls; EDEM.

Description: Abstraction is the process of generat-
ing new events based on existing, or patterns of
existing, events. Recoding is the process of gener-
ating a new event stream based on abstracted
events.

Examples: CHIME; Hawk; MacSHAPA; User-ldenti-

Figure 5. Transfor mation

Description: Counts and summary statistics are
numeric values calculated based on Ul events to
characterize user behavior.

Examples: MIKE UIMS; KRI/AG; MacSHAPA; Long
Term Monitoring; AUS.

Figure 6. Countsand Summary Statistics

July 30, 1999

13 . D. H. Hilbert and D. F. Redmiles

Description: Sequence detection is the process of
identifying occurrences of target sequences—in this
case concretely defined—in source sequences.

Examples: None of the surveyed techniques use
concretely defined target sequences.

Description: Sequence detection is the process of
identifying occurrences of target sequences—in this
case abstractly defined—in source sequences.
Examples: LSA; Fisher’s Cycles; TOP/G; MRP;
MacSHAPA; Automatic Chunk Detection; Expecta-
tion Agents; EDEM.

Figure 7. Sequence Detection

Description: Sequence comparison is the process
of comparing target sequences—in this case con-
cretely defined—against source sequences and
producing measures of correspondence.

Examples: ADAM; USAGE; MacSHAPA.

Description: Sequence comparison is the process
of comparing target sequences—in this case
abstractly defined—against source sequences and
producing measures of correspondence.

Examples: EMA.

Figure 8. Sequence Comparison

Description: Sequence characterization is the pro-
cess of analyzing source sequences and generating
abstract models to characterize the sequential
structure of those sequences.

Examples: Markov-based; Grammar-based.

Figure 9. Sequence Characterization

July 30, 1999

Extracting Usability Information from User Interface Events . 14

Description: Visualizations present the results of Description: Integrated support includes support for
transformations and analyses in graphical form. multiple transformation, analysis, and visualization
Examples: MacSHAPA; USAGE; I-Observe; AUS. capabilities as well as data management.

Examples: Hawk; DRUM; MacSHAPA.

Figure 10. Visualization Figure 11. Integrated Support

infer higher level events of interest from user events automatically and synchronizes them with
interface events alone, and sometimes critical coded observations and comments that are
contextual information is simply missing from entered by experimenters either during or after
the event stream, making proper interpretation the evaluation session. Instead of using video,
challenging at best. Playback allows recorded events to be played

. . back through the application interface to re-trace
ﬁ]yencgd\?gﬂta?gcgftﬂmgﬂfmseg;;ovgﬁhmb{ﬂg the user’s actions. The evaluator can step
advantages provided by more semantically rich through the playback based on events or coded

) : ; observations as if using an interactive debugger.
observational data, such as video recordingsand e are a handful of simple built-in analyses to
experimenters’ observations.

automatically calculate counts and summary
By synchronizing Ul events with other sourcesstatistics. ~ This technique captures less
of data such as video or coded observation#f)formation than video-based techniques since
searches in one medium can be used to locatigleo can also be used to record off-line
supplementary information in others. Thereforebehavior such as facial gestures, off-line
if an investigator wishes to review all segmentslocumentation use, and verbalizations. Also,
of a video in which a user uses the help systethere can be problems associated with replaying
or invokes a particular command, it is notuser sessions accurately in applications where
necessary to manually search the entireehavior is affected by events outside of user
recording. The investigator can: (a) searclinteractions. For instance, the behavior of some
through the log of Ul events for particular eventgipplications can vary depending on the state of
of interest and use the timestamps associaté@tworks and persistent data stores.

with those events to automatically cue up th
video recording, or (b) search through a log o

observations (that were entered by th easurement”, is an integrated evaluation
) X . . oy nvironment that supports video-based usability
investigator either during or after the time of the

recording) and use the timestamps associatey aluation [Macleod et al. 1993]. DRUM was
9 P veloped at the National Physical Laboratory as

W hose obsenialne 10, SUE 4 e Whan of the ESPRIT Vewcs for Usabiiy
Y, S€g tandards in Computing Project (MUSIC).

be used to locate the detailed user interfaCSRUM feat
events associated with those episodes.

RUM, the “Diagnostic Recorder for Usability

ures a module for recording and
synchronizing events, observations, and video, a
4.1.2 Examples module for defining and managing observation
Playback is an early example of a systemsoding schemes, a module for calculating pre-
employing synch and search capabilities [Nealefined counts and summary statistics, and a
and Simmons 1983]. Playback captures Umodule for managing and manipulating

July 30, 1999

15 J D. H. Hilbert and D. F. Redmiles

evaluation-related information regarding
subjects, tasks, recording plans, logs, videos, and
results of analysis.

Usability specialists at Microsoft, Apple, and
SunSoft all report the use of tools that provide
synch and search capabilities [Weiler et al. 1993;
Hoiem and Sullivan 1994]. The tools used at
Microsoft include a tool for logging
observations, atool for tracking Ul events, and a
tool for synchronizing and reviewing data from
the multiple sources. Thetools used at Apple and
SunSoft are essentially similar. All tools support
some level of event selection as part of the

automated techniques. However, Ul events often
leave out higher level contextual information
that can more easily be captured using video
recordings and coded observations.

4.1.4 Limitations

Techniques relying on synchronizing Ul events

with video and coded observations typically

require the use of video recording equipment and
the presence of observers. The use of video
equipment and the presence of observers can
make subjects self-conscious and affect
performance and may not be practical or

permitted in certain circumstances. Furthermore,

capture process. Apple’s selection appears to beleo-based evaluations tend to produce massive
user-definable while Microsoft and SunSoft'samounts of data that can be expensive to
selection appear to be programmed into thanalyze. The ratio of the time spent in analysis
capture tools. Scripts and general-purposeersus the duration of the sessions being
analysis programs, such as Microsoft EXtel analyzed has been known to reach 10:1
[Dodge and Stinson 1999], are used to perforfSanderson and Fisher 1994; Nielsen 1993;
counts and summary statistics after capture. Abweeny 1993]. These matters are all serious
tools support video annotations to producdimiting factors on evaluation size, scope,
“highlights” videos. Microsoft’s tools provide an location, and duration.

API to allow applications to report application-
specific events or events not readily available i
the Ul event stream.

spome researchers have begun investigating
techniques for performing collaborative remote

usability evaluations using video-conferencing

I-Observe, the “Interface OBServation,software and application sharing technologies.
Evaluation, Recording, and VisualizationSuch techniques may help lift some of the
Environment”, also provides synch and searchmitations on evaluation location. However,

capabilities [Badre et al. 1995]. I-Observe is anore work must be done in the area of
set of loosely integrated tools for collecting,automating data collection and analysis if current
selecting, analyzing, and visualizing event dateestrictions on evaluation size, scope, and
that has been synchronized with videdluration are to be addressed.

recordings. Investigators can perform searchez[s2 Transformation

by specifying predicates over the attributes”

contained within a single event record4.2.1 Purpose

Investigators can then locate patterns of evenféese techniques combine selection, abstraction,
by stringing together multiple searchand recoding to transform event streams for
specifications into regular expressionsvarious purposes, such as facilitating human
Investigators can then use intervals matched gattern detection, comparison, and

such regular expressions (identified by begin aneharacterization, or to prepare data for input into
end events) to select data for visualization or tautomatic techniques for performing these
display the corresponding segments of the videidinctions.

recording. Selection operates by subtracting information

4.1.3 Strengths from event streams, allowing events and
The strengths of these techniques lie in theequences of interest to emerge from the “noise”.
ability to integrate data sources withSelection involves specifying constraints on

complementary strengths and weaknesses andewent attributes to indicate events of interest to
allow searches in one medium to locate relatede separated from other events or to indicate
information in the others. Ul events provideevents to be separated from events of interest.
detailed performance information that can béor instance, one may elect to disregard all
searched, counted, and analyzed usingvents associated with mouse movements in

July 30, 1999

Extracting Usability Information from User Interface Events . 16

order to focus analysis on higher level actions the user interface system. This technique was
such as button presses and menu selections. This demonstrated by modifying the X Toolkit
can be accomplished by “positively” selectingintrinsics [Nye and O'Reilly 1992] to report
button press and menu selection events or kgvents that trigger callback procedures registered
“negatively” selecting, or filtering, mouse by applications. This allows events not handled
movement events. by the application to be selected “out”

Abstraction rates by svnthesizing new ev ntautomatically. Investigators may further
action operates by synin€sizing New eVenta,nsirain event reporting by selecting specific

based on information in the event Stréamy, idjents of interest to report. Widgets in the user

-Snlfcgfrlfg-iﬂteg té'.'aeSg][ntehecaes?ntbgtrgggtexé%%terface toolkit were modified to provide a
! ! uts! v : uery procedure to return limited contextual

Instance, a pattern of events indicating that formation when an event associated with a
input field had been edited, that a new value h ven widget triggers a callback

been provided, and that the user’s editin '
attention had since shifted to another componeitartson and colleagues report an approach to
might indicate the abstract eventremote collaborative usability evaluation that
“VALUE_PROVI DED", which is not signified by relies on users to select events [Hartson et al.
any single event in the event streaml1996]. Users identify potential usability
Furthermore, the same abstract event might hoblems that arise during the course of
indicated by different events in different Ulinteracting with an application and report
components, for example, mouse eventmformation regarding these “critical incidents”
typically indicate editing in non-textual by pressing a “report” button that is supplied in
components while keyboard events typicallythe interface. The approach uses E-Mail to report
indicate editing in textual components. One madligitized video of the events leading up to and
also wish to synthesize events to relate the use fafllowing critical incidents along with contextual
particular Ul components to higher levelinformation provided by users. In this case,
concepts such as the use of menus, toolbars, s@lection is achieved by only reporting the
dialogs to which those components belong. events leading up to, anu events following,

user-identified critical incidents (whereandm

Recoding involves producing new event streams, ., parameters that can be set in advance by
based on the results of selection and abstraction.

This allows the same manual or automateﬂweStigatorS)l-

analysis techniques normally applied to rawcHIME, the “Computer-Human Interaction
event streams to be applied to selected angonitoring Engine”, is similar, in some ways, to
abstracted events, potentially leading to differenthen’s approach [Badre and Santos 1991al.
results. Consider the example presented iBHIME allows investigators to select ahead of
Section 3. If the sequences representing foyime which events to report and which events to
sequential print job activations were embeddefliter. An important difference is that CHIME
within the context of a larger sequence, they|so supports a limited notion of abstraction that
might not be identified as being similarg|jows a level of indirection to be built on top of
subsequences, particularly by automateghe window system. The basic idea is that
techniques such as those presented beloghstract “interaction units” (1Us) are defined that
However, after performing abstraction based Oftansjate window system events into platform
the grammar in that example, each of thespdependent events upon which further
sequences could be recoded A8AA", making monitoring infrastructure is built. The events to

them much more likely to be identified aspe recorded are then specified in terms of these
common subsequences by automatic teChn'queﬁ’ratform independent IU%

4.2.2 Examples

Chen presents an approach to user interface
event monitoring that selects events based on th& s approach actually focuses on capturing video and not
notion of “incidents” [Chen 1990] Incidents Al€events. However, the ideas embodied by the approach can
defined as only those events that actually triggeiually well be applied to the problem of selecting events of
some response from the application and not justterest surrounding user-identified critical incidents.

July 30, 1999

17 J D. H. Hilbert and D. F. Redmiles

Hawk is an environment for selecting, Investigators can configure EDEM to perform
abstracting, and recoding events in log files further hierarchical event abstraction by simply
[Guzdial 1993]. Hawk's main functionality is defining higher level abstract events in terms of
provided by a variant of the AWK programminglower level abstract events. All of this is done in
language [Aho et al. 1988], and an environmerntontext, so that contextual information can be
for managing data files is provided byused in selection and abstraction. EDEM also
HyperCard" [Goodman 1998]. Events appear incalculates a number of simple counts and
the event log one per line, and AWK patternsummary statistics.

action pairs are used to specify what is to biz 3 Strengths

matched in each line of input (the pattern) an he main strength of these approaches lies in

what is to be printed as output (the action). Thi eir explicit support for selection, abstraction
allows fairly flexible selection, abstraction, and plict PPO o N
and recoding which are essential steps in

recoding to be performed. ; ;
preparing Ul events for most types of analysis
MacSHAPA, which is discussed further below,as illustrated in Section 3). Chen and CHIME
supports selection and recoding via a databaseldress issues of selection prior to reporting.
query and manipulation language that allow#iartson and colleagues add to this a technique
investigators to select event records based dar accessing contextual information via the user.
attributes and define new streams based on tlEOEM adds to these automatic detection of
results of queries [Sanderson et al. 1994fritical incidents and abstraction that is
Investigators can also perform abstraction byerformed in context. All these techniques might
manually entering new records representingotentially be used to collect Ul events remotely.

abstract events and visually aligning them wit
existing events in a spreadsheet representati wk and MacSHAPA, on the other hand, 'do
not address event collection but provide

(see Figure 13). powerful and flexible environments for
EDEM, an “Expectation-Driven Event transforming and analyzing already captured Ul
Monitoring” system, captures Ul events andevents.

supports automated selection, abstraction, an[fj2 4 Limitations

recoding [Hilbert and Redmiles 1998a]. .
Selection is achieved in two ways: investigatorg—he techmgues that _select, abstract, anq recode
vents while collecting them run the risk of

specify ahead of time which events to report, anEl ; :
users can also cause events to be selected vig'gV'Nd away data that might have been useful

critical incident reporting mechanism akin to that! 2nalysis. Techniques that rely exclusively on
reported in [Hartson et al. 1996]. However, on&S€rs 10 select events are even more likely to
important difference is that EDEM also aIIOWSdrop useful information. With the exceptlon_of
investigators to define automated agents to he Dslfr'\a/\l(':tig;lear?geg(’:%%?r?s dtga;to Sé?\?pc;:‘ttel;lee)\(/lgﬁs
in the detection of “critical incidents”, thereby 9 y

fing some ofthe burden rom users o ot 1% Do5t, tapured mesing coriena

do not know when their actions are violating ot available

expectations about proper usage [Smilowitz et '

al. 1994]. Furthermore, investigators can useé.3 Counts and Summary Statistics

EDEM to define abstract events in terms of
. 4.3.1 Purpose

patterns of existing events. When EDEM detect}g\S noted above, one of the key benefits of Ul

a pattern of events corresponding to a Pre&vents is how readily details regarding on-line

gsgﬂfdaﬁgsﬁrﬁsérgvei?t'ir']ttoget?éragznatn s?rbesetra& havior can be .captured anq mar]lpulated using
Myutomated techniques. Most investigators rely on
general-purpose analysis programs such as
spreadsheets and statistical packages to compute
counts and summary statistics based on collected
vide a richer notion of abstraction. However, this appears to data (e.g., feature use counts or error

never have been implemented [Badre and Santos 1991a and frequencies). However, some investigators have
1991b)). proposed systems with specific built-in facilities

2.The paper also aludes to the possibility of allowing higher
level 1Us to be hierarchically defined in terms of lower level
1Us (using a context-free grammar and pre-conditions) to pro-

July 30, 1999

Extracting Usability Information from User Interface Events .

for performing and reporting such calculations.
This section provides examples of some of the
systems boasting specialized facilities for
calculating usability-related metrics.

4.3.2 Examples

The MIKE user interface management system
(UIMYS) is an early example of a system offering
built-in facilities for calculating and reporting
metrics [Olsen and Halversen 1988]. Because
MIKE controls all aspects of input and output
activity, and because it has an abstract
description that links user interface components
to the application commands they trigger, MIKE
is in a uniquely good position to monitor Ul
events and associate them with responsible
interface components and application
commands. Example metrics include:

« Performance time: How much time is spe
completing tasks such as specifying arg

ments for commands?

18

[Sanderson et al. 1994]. MacSHAPAs other
more powerful analysis features are described in
following sections.

Automatic Usability Software (AUS) is reported
to provide a number of automatically computed
metrics such as help system use, use of cancel
and undo, mouse travel, and mouse clicks per
window [Chang and Dillon 1997].

Finally, ErgoLight Operation Recording Suite
(EORS) and Usability Validation Suite (EUVS)
[ErgoLight Usability Software 1998] provide a
number of built-in counts and summary statistics
to characterize user interactions captured by the
tools, either locally in the usability lab, or
remotely over the Internet.

4.3.3 Related
?ﬁ number of commercial tools such as Aqueduct
AppScopé& [Aqueduct Software 1998] and Full
Circle Talkback¥ [Full Circle Software 1998]
have recently become available for capturing

* Mouse travel: Is the sum of the distancegjaia about application crashes over the Internet.
between mouse clicks unnecessarily high? These tools capture metrics about the operating
« Command frequency: Which commands arsystem and application at the time crashes occur,
used most frequently or not at all? and Talkback allows users to provide feedback

combined or placed closer to one another? developers can use to report events of interest,

. . . such as application feature usage. These tools
Cancel and undo: Which dialogs are fre- send captured data via E-mail to

; then

? mm e .

quenty canceled? Which commands are freEjevelopers’ computers where it is stored in a
database and plotted using standard database

quently undone?

* Physical device swapping: Is the user switchp|otting facilities.
ing back and forth between keyboard and

mouse unnecessarily? Which features aré3-4 Strengths _ _
associated with high physical swapping'Vith the number of possible metrics, counts, and

counts? summary statistics that might be computed and

. that might be useful in usability evaluation, it is

MIKE Iog's all Ul events and associates then?wice that some systems provide built-in facilities

with the interface components triggering them, ™" hotorm and report such calculations
and the application commands triggered b%\utomatically

them. Event logs are written to files that are later
read by a metric collection and report generatiod.3.5 Limitations
program. This program uses the abstradlvith the exception of MacSHAPA, the systems
description of the interface to interpret the loglescribed above do not provide facilities to allow
and to generate human readable reporesvaluators to modify built-in counts, statistics,
summarizing the metrics. and reports, or to add new ones of their own.
Also, the computation of useful metrics is
reatly simplified when the system computing
e metrics has a model linking user interface
omponents to application commands, as in the
:é/ase of MIKE, or when the application code is
Fnanually instrumented to report the events to be

MacSHAPA also includes numerous built-in
features to support computation and reporting

simple counts and summary statistics, includingc
for instance, the frequencies and durations of al
selection of events specified by the us

July 30, 1999

19 J D. H. Hilbert and D. F. Redmiles

analyzed, as in the case of AppScope and behaviors that might be abbreviated by simpler
Talkback. AUS does not address application- compositions of commands. A later version
specific features and thus is limited in its ability — attempted to use information about the side
to relate metrics results to application features. effects of commands in the environment to
recognize when a longer sequence of commands
might be replaced by a shorter sequence. In both
4.4.1 Purpose cases, TOP/G’s generator functionality could be
These techniques detect occurrences of concrete used to generate the shorter, or more “optimal”,
or abstractly defined “target” sequences withicommand sequence.

“source” sequence’s. In some cases targetp
sequences are abstractly defined and are suppli
by the developers of the technique (e.qg., Fisher
cycles, lag sequential analysis, multipl

4.4 Sequence Detection

searchers involved in exploratory sequential
& a analysis (ESDA) have applied a number of
t%chniques for detecting abstractly defined

' . X atterns in sequential data. For an in-depth
repeating pattern analysis, and automatic chu atment see [Sanderson and Fisher 1994].

detection). In other cases, target SeqUeNCes fiase techniques can be subdivided into two
more specific to a particular application and argssic categories:

supplied by the investigators using the technique
(e.g., TOP/G, Expectation Agents, and EDEM)Techniques sensitive to sequentially separated
Sometimes the purpose is to generate a list phtterns of events, for example:

matched source subsequences for perusal by the
investigator (e.g., Fisher’s cycles, maximal))
repeating pattern analysis, and automatic churtk Lag sequential analysis (LSA)

detection). Other times the purpose is tdechniques sensitive to strict transitions between
recognize sequences of Ul events that violatevents, for example:

articular expectations about proper Ul usage : . :

?e.g., TOP/G?Expectation Agerﬁ)ts,pand EDEME;.' Maximal Repeating Pattern Analysis (MRP)
Finally, in some cases the purpose may be to Log linear analysis

perform abstraction and recoding of the source Time-series analysis

sequence based on matches of the targ
sequence (e.g., EDEM).

Fisher's cycles

Blsher's cycles allow investigators to specify
beginning and ending events of interest that are
4.4.2 Examples then wused to automatically identify all
TOP/G, the “Task-Oriented Parser/Generator'pccurrences of subsequences beginning and
parses sequences of commands from @nding with those events (excluding those with
command-line simulation and attempts to infefurther internal occurrences of those events)
the higher level tasks that are being performefFisher 1991]. For example, assume an
[Hoppe 1988]. Users of the technique modelnvestigator is faced with a source sequence of
expected tasks in a notation based on Payne a@¢ents encoded using the letters of the alphabet,
Green'’s task-action grammars [Payne and Gre&tCh as: ABACDACDBADBCACCCD. Suppose
1986] and store this information as rewrite ofurther that the investigator wishes to find out
production rules in a Prolog databasewhathappened between all occurrence#dfs
Investigators can define composite task@ starting point) andD' (as an ending point),
hierarchically in terms of elementary tasksfisher’s cycles produces the following analysis:
Yvhich _they ml'J’st further decompose into Source sequenceBACDACDBADBCACCCD
triggering rules” that map keystroke level Beqi)

: : egin event: A
events into elementary tasks. Investigators may

also define rules to recognize “suboptimal” user =nd event: D
Output:

1.Thefollowing sentencesinclude names of approachesin pa- ABACDACDBADBCACCCD

rentheses to indicate how the examples explained in the next ABACDACDBADBCACCCD

subsection fall into finer subcategories of the broader “se- ABACDACDBADBCACCCD

guence detection” category.

July 30, 1999

Extracting Usability Information from User Interface Events . 20

ABACDACDBADBCACCCD An example of a technique that is more sensitive
to strict transitions is the Maximal Repeating
Cycle# Frequency Cycle Pattern (MRP) analysis technique [Siochi and
1 2 ACD Hix 1991]. MRP operates under the assumption
that repetition of user actions can be an
2 1 AD important indicator of potential usability
3 1 ACCCD problems. MRP identifies all patterns occurring
repeatedly in the input sequence and produces a

)) listing of those patterns sorted by length first
The investigator could then note that there were followed by frequency of occurrence in the
clearly no occurrences of B in any A->D cycle. source sequence. MRP applied to the sequence

Furthermore, the investigator might use a above would produce the following analysis:
grammatical technique to recode repetitions of

the same event into a single event, thereby Source SequencsBACDACDBADBCACCCD
revealing that the last cycle (ACCCD) is Output:

essentially equivalent to the first two (ACD). This

is one way of discovering similar subsequences Pattern # Frequency Pattern
in “noisy” data. 1 2 ACD
Lag sequential analysis (LSA) is another popular 2 3 AC
technique that identifies the frequency with 3 3 CcD
which two events occur at various “removes| 4 2 BA
from one another [Sackett 1978; Allison and 5 2 DB

Liker 1982; Faraone and Dorfman 1987,
Sanderson and Fisher 1994]. LSA takes on

event as a ‘key’ and another event as a ‘targelt_
and reports how often the target event occurs E

RP is similar in spirit to Fisher’s cycles and
A, however, the investigator does not specify
rticular events of interest. Notice that the
CCCD subsequence identified in the previous
examples is not identified by MRP since it only
€occurs once in the source sequence.

various intervals before and after the key even
If ‘A were the key andD the target in the
previous example, LSA would produce th
following analysis:

Source sequencaBACDACDBADBCACCCD Markov-based techniques can be used to

compute the transition probabilities from one or

Key event: A more events to the next event. Statistical tests
Targetevent: D can be applied to determine whether the
Lag(s): -4 through +4 probabilities of these transitions is greater than
Output: would be expected by chance [Sanderson and

Fisher 1994]. Other related techniques include

Lag 4|-3|-2|-1]11|2]| 3| 4] loglinear analysis [Gottman and Roy 1990] and
Occurrencés 0 111|120 1| formal time-series analysis [Box and Jenkins
1976]. All of these techniques attempt to find
grict sequential patterns in the data that occur

The count of 2 at Lag = +2 corresponds to th p v th d b ed b
ACD cycles identified by Fischer’s cycles aboveﬁ;]c;rrt]ecerequen y than wou € expected Dby

Assuming the same recoding operatioﬁ:
performed above to collapse multipleSantos and colleagues have proposed an
occurrences of the same event into a singlgigorithm for detecting users’ “mental chunks”
event, this count would increase to 3. Théased on pauses and flurries of activity in human
purpose of LSA is to identify correlations computer interaction logs [Santos et al. 1994].
between events (that might be causally related tphe algorithm is based on an extension of Fitts’
one another) that might otherwise have beemw [Fitts 1964] that predicts the expected time
missed by techniques more sensitive to the strigetween events generated by a user who is
transitions between events. actively executing plans, as opposed to engaging
in problem solving and planning activity. For

July 30, 1999

21 J D. H. Hilbert and D. F. Redmiles

each event transition in the log, if the pause in [Rosenblum 1991] are also related. The event
interaction cannot be justified by the predictive specification notations used in these approaches
model, then the lag is assumed to signify a might be applicable to the problem of specifying
transition from “plan execution phase” to “planand detecting patterns of Ul events.

acquisition phase” [Santos et al. 1994]. Th%.4_4 Strengths

approach uses the results of the algorithm tg; e strength of these approaches lies in their

segment the source sequence into plan execution.= . :
chunks and chunks most probably associatetP!ly 0 help investigators detect patterns of
interest in events and not just perform analysis

with problem solving and planning activity. Thev%n isolated events. The techniques associated

assumption is that expert users tend to ha ith ESDA help investigators detect patterns

longer, more regular execution chunks tha at mav not have been anticioated. Languages
novice users, so user expertise might be inferri y P ' guag

on the basis of the results of this chunkind®" detecting patterns of interest in Ul events
algorithm sed on extended regular expressions

[Sanderson and Fisher 1994] or on more
Finally, work done by Redmiles and colleaguegrammatically inspired techniques [Hilbert and

on “Expectation Agents” (EAs) [Girgensohn etRedmiles 1998b] can be used to locate patterns
al. 1994] and “Expectation-Driven Eventof interest and to transform event streams by
Monitoring” (EDEM) [Hilbert and Redmiles recoding patterns of events into abstract events.

1998b] rely on sequence detection techniques 534 5 Limitations

trigger various actions in response to pre: . .
specified patterns of events. These approachgge ESDA techniques described above tend to

employ an event pattern language to allowp'oduce large amounts of output that can be
investigators to specify composite events to b ifficult to interpret and that frequently do not

. : d to identification of usability problems
detected. When a pattern of interest is detecte a .
contextual information may also be querie uomo 1994]. The non-ESDA techniques

before action is taken. Possible actions includgduire investigators to know how to specify the
notifying the user andlor investigator that 2Lerns for which they are searching and to
particular pattern was detected, collecting us&eflne_them (sometimes painstakingly) before
feedback, and reporting Ul state and event§naIySIS can be performed.

leading up to detected patterns. Investigators5 Sequence Comparison

may also configure EDEM to abstract and recodg
event streams to indicate the occurrence
abstract events associated with pre-specifie
event patterns.

5.1 Purpose

hese techniques compare “source” sequences
ainst concrete or abstractly defined “target”
sequences indicatingartial matches between

4.4.3 Related the two? Some techniques attempt to detect
EBBA is a debugging system that attempts t@ivergence between an abstract model of the
match the behavior of a distributed programarget sequence and the source sequence (e.g.,
against partial models of expected behavior
[Bates 1995]. EBBA is similar to EDEM,
particularly in its ability to abstract and recode-

the event stream based on hierarchically definefﬁgodeI can be used to help the investigator better understand

abstract event%. where the program’s behavior has gone wrong (or where a

model is inaccurate). However, EBBA does not directly indi-

Am,adeus [Selby et al. 1991] and YEASTcate that partial matches have occurred or provide any diag-
[Krishnamurthy and Rosenblum 1995] are eventsostic measures of correspondence. Rather, the user must
action systems used to detect and take actiofgice that a full match has failed, and then manually inspect
based on patterns of events in softwaree state of the pattern matching mechanism to see which
processes. These systems are also similar éments were matched and which were not.

spirit to Expectation Agents and EDEM. 2 The following sentences include names of approaches in pa-
Techniques that have been used to specifgntheses to indicate how the examples explained in the next
behavior of concurrent systems, such as the TasWbsection, fall into finer subcategories of the broader “se-

Sequencing Language (TSL) as described igHence comparison” category.

EBBA issometimes characterized as a sequence comparison
stem since the information carried in a partially matched

July 30, 1999

Extracting Usability Information from User Interface Events . 22

EMA and USINE). Others attempt to detect
divergence between a concrete target sequence
produced, for example, by an expert user and a
source sequence produced by some other user
(eg., ADAM and UsSAGE). Some produce
diagnostic measures of distance to characterize
the correspondence between target and source
sequences (e.g., ADAM). Others attempt to
perform the best possible alignment of eventsin
target and source sequences and present the
results visually (e.g., USAGE and MacSHAPA).
Still others use points of deviation between the

MacSHAPA [Sanderson and Fisher 1994]

provides techniques for aligning two sequences
of events as optimally as possible based on
maximal common subsequences [Hirschberg
1975]. The results are presented visually as cells
in adjacent spreadsheet columns with aligned
events appearing in the same row and missing
cells indicating events in one sequence that could
not be aligned with events in the other (see
Figure 17).

UsAGE applies a related technique in which a
source sequence of Ul events (related to

target and input sequences to automaticaly

indicate potential “critical incidents” (e.g., EMA performance of a specific task) is aligned as

and USINE). In all cases, the purpose is t8ptimally as possible with a target sequence

compare actual usage against some model Bfoduced by an *expert” performing the same
tracep of “ideal” or egpectged usage to identif;PaSK [Ueling and Wolf 1995]. USAGE presents

) . its alignment results in visual form.
potential usability problems. _ _ .
EMA, an “automatic analysis mechanism for the

4.5.2 Examples o _ . ergonomic evaluation of user interfaces”,
ADAM, ?n ‘Advanced D[str|buted Associative requires investigators to provide a grammar-
Memory”, compares fixed length sourcepased model describing all the expected paths
sequences against a set of target sequences ugh a particular user interface [Balbo 1996].
were used to “train” the memory [Finlay andap eyaluation program then compares a log of
Harrison 1990]. Investigators train ADAM Dy eyents generated by use of the interface against
helping it associate example target sequencggse model, indicating in the log and the model
with “classes” of event patterns. After training,yhere the user has taken “illegal” paths. EMA
when a source sequence is input, the associatiyfg detects and reports the occurrence of other
memory identifies the class that most closelgimme patterns, for example, the use of cancel or
matches the source sequence and Outputs tWyeated actions. The evaluator can then use this

diagnostic measures: a “confidence” measurgtormation to identify problems in the interface
that is 100% only when the source sequence ggr problems in the model).

identical to one of the trained target sequence

and a “distance” measure, indicating how far th&/SINE is a similar technique [Lecerof and
source pattern is from the next “closest” clasg?aterno 1998], in which investigators use a
Investigators then use these measures fderarchical task notation to specify how lower-
determine whether a source sequence is differel@vel actions combine to form higher-level tasks,
enough from the trained sequences to be judg&id to specify sequencing constraints on actions
as a possible “critical incident”. Incidentally, and tasks. The tool then compares logs of user
ADAM might also be trained on examples ofactions against the task model. All actions not
“expected” critical incidents so that these mighspecified in the task model, or actions and tasks
be detected directly. performed “out of order” according to the
sequencing constraints specified in the task
model, are flagged as potential errors. The tool
then computes a number of built-in counts and
summary statistics including number of tasks
completed, errors, and other basic metrics (e.g.,
pected usage to identify potential usability problems. Howev- window resizing and scrollbar usage) and
er, these approaches are better characterized as detecting _generates simple graphs.

complete matches between source sequences and (“negatively

defined”) target patterns that indicate unexpected, or suboptErgoLight Usability Validation Suite (EUVS)
mal behavior, as opposed to partially matching, or comparin@lso compares user interactions against
source sequences against (“positively defined”) target pattersierarchical representations of user tasks
indicating expected behavior. [ErgoLight Usability Software 1998]. EUVS is

1.TOP/G, Expectation Agents, and EDEM (discussed above)
are also intended to detect deviations between actual and ex-

July 30, 1999

23 J D. H. Hilbert and D. F. Redmiles

similar in spirit to EMA and USINE with the
added benefit that it provides a number of built-
in counts and summary statistics regarding
general user interface use in addition to
automatically-detected divergences between user
actions and the task model.

4.5.3 Related

Process validation techniques are related in that
they compare actual traces of events generated
by a software process against an abstract model
of the intended process [Cook and Wolf 1997].
These techniques compute a diagnostic measure
of distance to indicate the correspondence
between the trace and the closest acceptable
trace produced by the model. Techniques for
performing error correcting parsing are aso
related. See [Cook and Wolf 1997] for further
discussion and pointersto relevant literature.

4.5.4 Strengths

The strengths of these approaches lie their ability
to compare actual traces of events against
expected traces, or models of expected traces, in
order to identify potential usability problems.
This is particularly appealing when expected

traces can be specified “by demonstration” as i

the case of ADAM and UsAGE.

4.5.5 Limitations

on a case to case basis what exactly the
correspondence measure means.

A key limitation of any technique comparing
sequences against abstract models (e.g., EMA,
USINE, ErgoLight EUVS, and the process
validation techniques described by Cook and
Wolf) is that in order to reliably categorize a
source sequence as being a poor match, the
model used to perform the comparison must be
relatively complete in its ability to describe all
possible, or rather, expected paths. This is all but
impossible in most non-trivial interfaces.
Furthermore, the model must somehow deal with
“noise” so that low-level events, such as mouse
movements, won't mask otherwise significant
correspondence between source sequences and
the abstract model. Because these techniques
typically have no built-in facilities for
performing transformations on input traces, this
implies that either the event stream has already
been transformed, perhaps by manually
instrumenting the application (as with EMA), or
complexity must be introduced into the model to
avoid sensitivity to “noise”. In contrast,
techniqgues such as EDEM and EBBA use
HBelection and abstraction to pick out patterns of
interest from the noise. The models need not be
complete in any sense and may ignore events

Unfortunately, all of these techniques havéhat are not of interest.

significant limitations.

4.6 Sequence Characterization

A key limitation of any approach that compares; 6.1 purpose

source sequences against concrete

targfhese techniques take “source” sequences as

sequences is the underlying assumption that: (fput and attempt to construct an abstract model

source and target sequences can be easjly

summarize, or characterize, interesting

segmented for piecemeal comparison, as in th@quential features of those sequences. Some
sequences produced by different users wilhropapilities associated with transitions [Guzdial
actually exhibit reasonable correspondence, as 993]. Others construct models that characterize

the case of USAGE.

the grammatical structure of events in the input

Furthermore, the output of all these technique§eduences [Olson et al. 1993].
(except in the case of perfect matches) requiregs 2 Examples

expert human interpretation to determingsyzdial describes a technique, based on Markov
whether the sequences are interestingly similatnain analysis, that produces process models
or different. In contrast to techniques thalith probabilities assigned to transitions to
completely match patterns that directly indicat@naracterize user behavior with interactive
violations of expected patterns (e.g., as in thg plications [Guzdial 1993]. First, the
case of EDEM), these techniques produce outpifyestigator identifies abstract stages, or states,
to the effect, “the source sequence is similar to g application use. In Guzdial's example, a
target sequence with a correspondence measwignple design environment was the object of
of 61%”, leaving it up to investigators to decidestudy_ The design environment provided

functions supporting the following stages in a

July 30, 1999

Extracting Usability Information from User Interface Events . 24

simple design process: ‘“initial review”, is subjected to the same statistical techniques
“decomposition”, “composition”, “debugging”, leading to further iterative refinement of the

and “final review”. The investigator then createggrammar. The result is a set of grammar rules
a mapping between each of the operations in thbkat provide insight into the sequential structure
interface and one of the abstract stages. Fof the meeting interactions.

instance, Guzd[al mapped all debugging rel_ateg_b._g Related

commands (which incidentally all appeared in
single “debugging” menu) to the “debugging
stage. The investigator then uses the Hawk to
to abstract and record the event stream to repla
low level events with the abstract stage?
associated with them (presumably droppin

events not associated with stages). Th

investigator then uses Hawk to compute th more promising approach might be to perform
observed probability of entering any stage fro selection, abstraction, and recoding of the event

the stage immediately before it to yield a . 2 .
transition matrix. The investigator can then usdlream prior to submitting it for analysis.
the matrix to create a process diagram witkt.6.4 Strengths
probabilities associated with transitions. InThe strength of these techniques lies in their
Guzdial's example, one subject was observed tability to help investigatorsliscover sequential
have transitioned from “debugging” tostructure within event sequences and to
“composition” more often (52% of all transitions characterize that structure abstractly.
out of “debugging”) than to “decomposition” o
(10%) (See Figure 18). Guzdial then computed 8-> Limitations .
steady state vector to reflect the probability of "€ technique described by Olson and
any event chosen at random belonging to eadp!léagues — requires extensive human
particular stage. He could then compare this tfjvolvement and can be very time-consuming
an expected probability vector (computed byO!Son et al. 1994]. On the other hand, the
simply calculating the percentage of commandguiomated techniques suggested by Cook and
associated with each stage) to indicate us%‘(ﬁolf appear to be sensitive to noise and are less
“oreference” for classes of commands. likely to produce models that make sense to
investigators [Olson et al. 1994].
Olson and colleagues describe an approach, . .
based on statistical and grammatical techniquel Our opinion, Markov-based models, while
for characterizing the sequential structure of€YiNg on overly simplifying assumptions, are
verbal interactions between participants ifnre likely than grammar-based techniques to
design meetings [Olson et al. 1993]. They begilf!l _investigators —something about user
by mapping meeting verbalizations into evenjlteractions that they don't already know.
categories that are then used to manually encodfdvestigators often have an idea of the
the transcript into an event sequenc&rammat'cal structure of interactions that may

representation. The investigator then applie@'iSe from the use of (at least portions of) a
statistical techniques, including log ”nearpamcular_mterface. Grammars are t_hus us_eful in
modeling and lag sequential analysis, to identififansforming low level Ul events into higher

potential dependencies between events in t gvel events of interest, or to detect when actual
sequence. The investigator then uses the resufts®9¢€ paﬁternsl vu;late expected patte'rnsl.
of these pattern detection techniques to sugge"slp""e"erk;t edva u?jol generating a grammatica
rules that might be included in a definite claus@" FSM-based model to summarize use is more

grammar to summarize, or characterize, some gfnited. More often than not, a grammar- or
the sequential structure of the meeting >M-Pased model generated on the basis of
interactions. The investigator then uses thdultiple traces will be vacuous in that it will
resulting grammar rules to rewrite some of th&é€scribe all observed patterns of usage of an
patterns embedded in the sequence (i_épterface without indicating which are most

abstraction and recoding), and the new sequent@mmon. While this may be useful in defining
paths for Ul regression testing, investigators

Process discovery techniques are related in that
g?ey attempt to automatically generate a process
%odel, in the form of a finite state machine, that
ccounts for a trace of events produced by a
articular software process [Cook and Wolf
996]. It is not clear how well these techniques
ould perform with data as noisy as Ul events.

July 30, 1999

25 J D. H. Hilbert and D. F. Redmiles

Timeline: WordPro cessor.db

00:01:00 00DZO0 000300 OO:04D0 O0DS00
| | | | |

B Ecit MenuUss

—E-H-ER—HH—H

[N
T

|:| Forit Menu Llse I H !

1
Ly

el] =

Figure 12. Use of “Edit” menu operations is
indicated in black. Use of “Font” menu operations
is indicated in grey. Used to display results of
transformations or sequence detection.

OrderForm.dh

Ul Events [Abs. Interaction Events | TaskRelated. Events
Q - -

:
GotFocus{Mame)
KeyiName, "D
KewiName, "a"
KewiName, vy
KeytName, *i
KewiName, " d7
LostFocusiMame)
GotFocus(Street)

GotEd itfMame) AddressSe ction Started)

Lot Bdit{ Name))
GotEd it Stre et
e Provided] Mame, “Davi 47

Key(Street, '13

Mame Provided 'Davi 47

Key(Strest, ‘30
Key(Street, ‘20

LostFocusiZIP)
GotFocus(Quantty)

Lost Edit(ZIF)
GotEd it 0 uaritity)
. ZIP Provided (" 307 4071
“alueProvided(ZIP, " 90 740"
AddrezsSe ction Completed ()

Key(Quartity,' 1)

Figure 13. Correspondence between events at
different levels of abstraction is indicated by
horizontal alignment. Single “Key” events in large
cells correspond to “LostEdit”, “GotEdit”, and
“ValueProvided” abstract interaction events in
smaller, horizontally aligned cells.

interested in locating usability problems will
more likely be interested in identifying and
determining the frequency of specific observed
patterns than in seeing a grammar to summarize
them all.

4.7 Visualization

4.7.1 Purpose

These techniques present the results of
transformation and analysis in forms alowing
humans to exploit their innate visua analysis
capabilities to interpret results. Some of these
techniques are helpful in linking results of
analysis back to features of the interface.

July 30, 1999

4.7.2 Examples

Investigators have proposed a number of
techniques to visualize data based on Ul events.
For a survey of such techniques see [Guzdial et
al. 1994]. Below are few examples of techniques
that have been used in support of the analysis
approaches described above.

Transformation:

The results of performing selection or
abstraction on an event stream can sometimes be
visualized using a timeline in which bands of
colors indicate different selections of events in

the event stream. For example, one might use red

to highlight the use of “Edit” menu operations
and blue to highlight the use of “Font” menu
operations in the evaluation of a word processor
(Figure 12).

MacSHAPA [Sanderson and Fisher 1994]
visualizes events as occupying cells in a
spreadsheet. Event streams are listed vertically
(in adjacent columns) and correspondence of
events in one stream with events in adjacent
streams is indicated by horizontal alignment
(across rows). A large cell in one column may
correspond to a number of smaller cells in
another column to indicate abstraction
relationships (Figure 13).

Counts and summary statistics:

There are a number of visualizations that can be
used to represent the results of counts and
summary statistics, including static 2D and 3D
graphs, static 2D effects superimposed on a
coordinate space representing the interface, and
static and dynamic 2D and 3D effects
superimposed on top of an actual visual
representation of the interface.

The following are examples of static 2D and 3D

graphs:

» Graph of keystrokes per window [Chang and
Dillon 1997].

* Graph of mouse clicks per window [Chang
and Dillon 1997].

» Graph of relative command frequencies [Kay
and Thomas 1995] (Figure 14).

» Graph of relative command frequencies as

they vary over time [Kay and Thomas 1995]
(Figure 15).

Extracting Usability Information from User Interface Events . 26

- Relative Fréduen:y Ipercenti
s

8

20 30 - 40 - 50

1o i
- popullar _ CommandRank notpopuiar

Figure 14. Relative command frequencies ordered
by “rank”.

Figure 16. A 3D representation of mouse click
density superimposed over a graphical
representation of theinterface.

Sequence detection:

The same technique illustrated in Figure 12 can
be used to visualize the results of selecting
subsequences of Ul events based on sequence
detection techniques.

Frequency (perce

e EDEM provides a dynamic visualization of the

occurrence of Ul events by highlighting nodes in

Figure 15. Relative command frequenciesover time ~ @ hierarchical representation of the user interface
being monitored. A similar visualization is

. . provided to indicate the occurrence of abstract
The following are examples of static 2D effects o\ ants *defined in terms of abstract patterns of

superimposed on an abstract coordinate space events, by highlighting entries in a list of agents

representing the interface: responsible for detecting those patterns. These
« Location of mouse clicks [Guzdial et al.visualizations help investigators inspect the
1994; Chang and Dillon 1997]. dynamic behavior of events, thereby supporting

* Mouse travel patterns between clicks [Buxto
et al. 1983; Chang and Dillon 1997].

The following are examples of static andSequence comparison:
dynamic 2D and 3D effects superimposed on t0Rs described above, MacSHAPA provides
of a graphical representation of the interface: facjlities for aligning two sequences of events as

- Static highlighting to indicate location and©pPtimally as possible and presenting the results
density of mouse clicks [Guzdial et al. 1994] Visually as cells in adjacent spreadsheet columns
e “[Sanderson and Fisher 1994]. Aligned events
* Dy'.‘am"? h|gh||gh.t|ng of mouse click activity appear in the same row and missing cells
as it varies over time [Guzdial et al. 1994]. indicate events in one sequence that could not be

+ 3D representation of mouse click locationaligned with events in the other (Figure 17).
and density [Guzdial et al. 1994] (Figure 16).

he process of event pattern specification
Hilbert and Redmiles 1998a].

UsSAGE provides a similar visualization for
comparing sequences based on drawing a

July 30, 1999

27 . D. H. Hilbert and D. F. Redmiles
Medling.db 063

Mesting Mectingd
amplity amplity
Fesalve |ssue Feszalve |ssue
|dentify Proklem |ddentify Proklem
Amplify Digress
Digress Amplity
R ecapitul ate R ecapitul ate
';:"tl:z Alignment: Meeting.db
. pl Meetinga Meetings
| de:_\' Amplity Amplity
.ﬁr:pl::' Resolve lssue Resolve |=sue
Digress :I':;dl:z Problem Identify Problem 0.50 0.50
ampli
Resjll\? Digress Digress

! amplity
:lermlfy R ecapitulate Recapitulate
S fertify Issue Idertify Issue 0.89

Di . .
e Figure 18. A process model characterizing user

eTt I esalve lssue behavior with nodes representing process steps

2 ldertity 1ssue Iefentify |ssue and arcs indicating observed probabilities of

E e Resalve |ssus transitions between process steps.

Particularly useful are the techniques that link
results of analysis back to features of the
interface, such as the techniques superimposing
graphical representations of behavior over actual
representations of the interface.

|ddentify lssue

Figure 17. Results of an automatic alignment of
two separ ate event streams. Horizontal alignment
indicates correspondence. Black spaces indicate

where alignment was not possible. 4.7.4 Limitations

. With the exception of simple graphs (which can
connected 9“39“ Of no_d% [Ueh_ng apd .WOlf ypically be generated using standard graphing
1995].The expert” series of actions is displaye pabiiities provided by spreadsheets and
linearly as a sequence of nodes across the tOpéﬁatistical analysis packages), most of the
f[he' graph. The novice ' Series of actions ASisualizations above must be produced by hand.
indicated by drawing directed arcs Conr!ec“n%echniques for accurately superimposing
the nodes to represent the order in which th raphical effects over visual representations of

novice performed the actions. Out of sequency."nterface can be particularly problematic.
actions are indicated by arcs that skip exper

nodes in the forward direction or that point4.8 Integrated Support

backwards in the graph. Unmatched actiong g ; Purpose

taken by the novice appear as nodes (With @, ironments that facilitate flexible composition

different color) placed below the last matcheqy; \arious transformation analysis, and

expert node. visualization capabilities provide integrated

support. Some environments also provide built-
support for managing domain-specific

; n
_Guzd|al uses a connected grgph visualization Wrtifacts such as evaluations, subjects, tasks, data
illustrate the results of his Markov-based, 4 results of analysis.

analysis [Guzdial 1993]. The result is a process

model with nodes representing process steps add.2 Examples

arcs indicating the observed probabilities oMacSHAPA is perhaps the most comprehensive

transitions between process steps (Figure 18). environment designed to support all manner of
exploratory sequential data analysis (ESDA)

4.7.3 Strengths . . Sanderson et al. 1994]. Features include: data

The strengths of these techniques lie in thejr,nq+ ang export; video and coded observation

ability to present the results of analysis in formgy o ang search capabilities; facilities for

allowing humans to exploit their innate visualye forming selection, abstraction, and recoding;

analysis capabilities to interpret resultsa number of built-in counts and summary

Sequence characterization:

July 30, 1999

Extracting Usability Information from User Interface Events . 28

statistics; features supporting sequence sSignificantly reduce the burden of data
detection, comparison, and characterization; a management and integration.

general-purpose database query and
mani pul ation language; and a number of built-in
visualizations and reports.

DRUM provides integrated features for
synchronizing events, observations, and video;
for defining and managing observation coding
schemes; for calculating pre-defined counts and
summary statistics; and for managing and
manipulating evaluation-related artifacts
regarding subjects, tasks, recording plans, logs,

\{b%e?js and results of analysis [Macleod et & invol_vement and interpretgtion._ MacSHAPA

' provides many of the basic building blocks
Hawk provides flexible support for creating, required for an “ideal” environment for
debugging, and executing scripts to capturing and analyzing Ul events, however,
automatically select, abstract, and recode event selection, abstraction, and recoding cannot be
logs [Guzdial 1993]. Management facilities are easily automated. Furthermore, because the
also provided to organize and store event logs powerful features of MacSHAPA cannot be used
and analysis scripts. during event collection, contextual information
that might be useful in selection and abstraction
is not available.

4.8.4 Limitations
Most of the environments above possess
important limitations.

While MacSHAPA is perhaps the most
comprehensive integrated environment for
analyzing sequential data, it is not specificaly
designed for analysis of Ul events. Asaresult, it
lacks support for event capture and focuses
primarily on analysis techniques that, when
applied to Ul events, require extensive human

Finally, ErgoLight Operation Recording Suite
(EORS) and Usability Validation Suite (EUVS)
[ErgoLight Usability Software 1998] offer a While providing features for managing and
number of facilities for managing usability analyzing Ul events, coded observations, video
evaluations, both local and remote, as well as data, and evaluation artifacts, DRUM does not
facilities for merging data from multiple users. provide features for selecting, abstracting, and

4.8.3 Strengths recoding data.

The task of extracting usability-related Finally, while Hawk addresses the problem of
information from Ul eventstypically requiresthe providing automated support for selection,
management of numerous files and media types abstraction, and recoding, like MacSHAPA, it
as well as the creation and composition of does not address Ul event capture, and as a
various anaysis techniques. Environments result, contextual information cannot be used in
supporting the integration of such activities can selection and abstraction.

Column Label Key to Column Values

Event Capture (Yes) = events captured automatically; (Instr) = application must be hand-instrumented; (Sim) = events captured by
command line simulation.

Synch/Search (Obs) = events synchronized with coded observations; (Vid) = events synchronized with video.

Use of Context (UI) = the Ul can be queried for contextual information; (App) = the application can be queried. (User) = the user
provides contextud info.

Select/Recode through (Built-in) = built-in selection/abstraction/counts & stats/detection; (User) = user selects/abstracts events; (Model) =

Sequence Detect abstract model used to select/abstract/detect; (Script) = scripts used; (Program) = programs used; (Database) = data
base query & manipulation language used.

Sequence Compare (Concrete) = source sequence compared against concrete target sequence; (Model) = source sequence compared
against abstract model.

Sequence Character (Manual) = abstract model constructed manually using statistical/grammatical techniques; (Auto) = abstract model
generated automatically.

Visualize (Built-in) = built-in visualizations; (Graphs) = use of standard graphing facilities; (Database) = use of database
graphing facilities.

DataManage (Built-in) = built-in management of domain-specific artifacts.

Figure 19. A key tointerpreting the valueslisted in columns of Table 3.

July 30, 1999

Techniques (sorted by class)

Table 3: A classification of computer-aided techniquesfor extracting usability-related information from user interface events

Synch/ Event Use of Select/ | Abstract/ | Counts& | Sequence | Sequence | Sequence Data
Tool/Technique Reference Search Capture | Context Recode Recode Stats Detect Compare | Character | Visualize | Manage | Ul Platform
5 Playback [Neal & Simmons 1983] Yes Obs. Built-in Unknown
:,.! g AppleLab [Weiler 1993] Yes Obs.+Vid. Built-in MacOS
& | [|sunsoftLab [Weiler 1993] Yes Obs.+Vid. Built-in X Windows
g § Microsoft Lab [Hoiem & Sullivan 1994] Yes Obs.+Vid. Built-in MS Windows
@ |I-Observe [Badreet al. 1995] Yes Vid. Model Built-in X Windows
~ g Incident Monitoring [Chen 1990] Yes Ul Built-in X Windows
%r ‘g User Identified Cls [Hartson et al. 1996] Yes User User User Unknown
= |5 CHIME [Badre & Santos 1991] Yes ul Model Model X Windows
g = EDEM [Hilbert & Redmiles 1997] Yes Ul+User |Model+User|Model+User| Built-in Model Built-in Java AWT
UIMS [Buxton et al. 1983] Yes Built-in Built-in UIMS
) MIKE [Olsen & Halversen 1988] Yes Built-in UIMS
2 g KRI/AG [Lowgren & Nordqvist 1992] Yes Built-in UIMS
& |® |Long-Term Monitoring |[Kay & Thomas 1995] Instr. Programs Graphs API
§ g AUS [Chang & Dillon 1997] Yes Built-in Built-in MS Windows
O Adqueduct AppScope [Aqueduct Software 1998] Instr. Database Database API
Full Circle Talkback [Full Circle Software 1998] Instr. Database Database API
LSA [Sackett 1978] Built-in
Fisher’s Cycles [Fisher 1988] Built-in
TOPIG [Hoppe 1988] Sim. Sim. Model Simulation
MRP [Siochi & Hix 1991] Built-in
< |o Expectation Agents [Girgensohn et al. 1994] Yes Ul+Uger User User Model 0s/2
3 g § |EDEM [Hilbert & Redmiles 1997] Yes Ul+User| Model+Uger Model+User Built-if Model Java AWT
';% i-g USINE [Lecerof & Paterno 1998] Yes Built-in| ~ Model Model Built-in X Windows
TSL [Rosenblum 1991] Model N/A
Amadeus [Selby et al. 1991] Model N/A
YEAST [Krishnamurthy & Rosenblum 1995] Model Model N/A
EBBA [Bates 1995] App Model Model N/A
GEM [Mansouri-Samani & Sloman 1997] App Model Model Model N/A
ADAM [Finlay & Harrison 1990] Concrete Unknown
ﬁ 8 g UsSAGE [Ueling & Wolf 1995] Yes Concrete Built-in uUIMS
FREEED [Balbo 1996] Instr. Model AP
§ § 8 USINE [Lecerof & Paterno 1998] Yes Built-in Model Model Built-in X Windows
Process Validation [Cook & Wolf 1997] Model N/A
g Qo Markov-based [Guzdial 1993] Model Manual
.5 § § Grammer-based [Olson et al. 1994] Model Manual
§ g S Process Discovery [Cook & Wolf 1995] Auto N/A
~ Hawk [Guzdial 1993] Script Script Script Script Built-in
?:: g § DRUM [Macleod & Rengger 1993] Yes Obs.+Vid. Built-in Built-in MacOS
'§ g’ § MacSHAPA [Sanderson et al. 1994] Obs.+Vid. Database | Database| Built-in |[Built-in+DB| Concrete | Manual Built-in Built-in
= Ergolight EORS/EUVS | [Ergolight Usability Software 1998] Yes Built-in Model Model? Built-in Built-in | MS Windows

Extracting Usability Information from User Interface Events . 30

5. DISCUSSION

5.1 Summary of the State of the Art

Synch and search techniques are among the most
mature technologies for exploiting Ul event data
in usability evaluations. Tools supporting these
techniques are becoming increasingly common
in usahility labs. However, these techniques can
be costly in terms of equipment, human
observers, and data storage and analysis
requirements. Furthermore, synch and search
techniques generally exploit Ul events as no
more than convenient indices into video
recordings. In some cases, events may be used as
the basis for computing simple counts and
summary statistics using spreadsheets or
statistical packages. However, such analyses
typically require investigators to perform
selection and abstraction by hand.

The other, arguably more sophisticated, analysis
techniques such as sequence detection,
comparison, and characterization continue to
remain denizens of the research lab for the most
part. Those that are most compelling tend to
require the most human intervention,
interpretation, and effort (e.g., exploratory
sequential data analysis techniques and the
Markov- and Grammar-based sequence
characterization techniques). Those that are most
automated tend to be least compelling and most
unreglistic in their assumptions (e.g., ADAM,
USAGE, and EMA). One of the main problems
limiting the success of automated approaches
may be their lack of focus on transformation,
which appears to be a necessary prerequisite for
meaningful analysis (for reasons articulated in
Section 3 and discussed further below).

Nevertheless, few investigators have attempted
to address the problem of transformation
realisticaly. Of the twenty-five plus approaches
surveyed here, only a handful provide
mechanisms that allow investigators to perform
transformations at al (Microsoft, SunSoft,
Apple, Chen, CHIME, EDEM, Hawk, and
MacSHAPA). Of those, fewer still allow models
to be constructed and reused in an automated
fashion (CHIME, EDEM, and Hawk). Of those,
fewer still allow transformation to be performed
in context so that important contextual
infformation can be used in selection and
abstraction (EDEM).

5.2 Some Anticipated Challenges

There is very little data published regarding the
relative utility of the surveyed approaches in
supporting usability evaluations. As a result, we
have focused on the technical capabilities of the
surveyed approaches in order to classify,
compare, and evaluate them. To take this
analytical evaluation a step further: our
understanding of the nature of Ul events (based

on extensive Java, Windows, and X Windows
programming experience) leads us to conclude

that more work will likely be needed in the area

of transforming the “raw” data generated by such
event-based systems in preparation for other
types of analysis in order to increase the
likelihood of useful results. This is because most
other types of analysis (including simple counts
and summary statistics as well as sequence
analysis techniques) are sensitive to lexical-level
differences in event streams that can be removed
via transformation, as illustrated in Section 3.2.

There are a number of ways that investigators
have successfully side-stepped the
transformation problem. For instance, building
data collection directly into a user interface
management system or requiring applications to
report events themselves can help ameliorate
some of the issues. However, both of these
approaches have important limitations.

User interface management systems (UIMSSs)
typically model the relationships between
application features and Ul events explicitly, so
reasonable data collection and analysis
mechanisms can be built directly in, as in the
case of the MIKE UIMS [Olsen and Halversen
1988], KRI/AG [Lowgren and Nordgvist 1992],
and UsAGE [Ueling and Wolf 1995]. Because
UIMSs have dynamic access to most aspects of
the user interface, contextual information useful
in interpreting the significance of events is also
available. However, many developers do not use
UIMSs, thus, a more general technique that does
not presuppose the use of a UIMS is needed.

Techniques that allow applications to report
events directly via an event-reporting API
provide a useful service, particularly in cases
where events of interest cannot be inferred from
Ul events. This allows important application-
specific events to be reported by applications
themselves and provides a more general solution
than a UIMS-based approach. However, this

July 30, 1999

31 J D. H. Hilbert and D. F. Redmiles

places an increased burden on application
developers to capture and transform events of
interest, for example, as in [Kay and Thomas
1995; Babo 1996]. This can be costly,
particularly if there is no centralized command
dispatch loop, or similar mechanism, that can be
tapped as a source of application events. This
aso complicates software evolution since data
collection code is typically intermingled with
application code. Furthermore, there is much
usability-related information not typicaly
processed by applications that can be easily
captured by tapping into the Ul event stream, for
instance, shifts in input focus, mouse
movements, and the specific user interface
actions used to invoke application features. As a
result, an event-reporting APl is just part of a
more comprehensive sol ution.

Thus, we conclude that more work is needed in
the area of transformation and data collection to
ensure that useful information can be captured in
the first place, before automated analysis
techniques, such as those surveyed above, can be
expected to yield meaningful results (where

and model-based testing and debugging, e.g.,
EBBA [Bates 1995] and TSL [Rosenblum
1991], have addressed a number of problems
in the specification and detection of compos-
ite events and the use of context in interpret-
ing the significance of events. The event
specification notations, infrastructure, and
experience that have come out of this work
might provide useful insights that can be
applied to the problem of capturing and ana-
lyzing Ul event data.

Automated user interface testing techniques,
e.g., WinRunnéM [Mercury Interactive
1998] and JavaSfar [Sun Microsystems
1998], are faced with the problem of robustly
identifying user interface components in the
face of user interface change, and evaluating
events against specifications of expected Ul
behavior in test scripts. The same problem is
faced in maintaining the relationships
between Ul components and higher-level
specifications of application features and
abstract events of interest in usability evalua-
tions based on Ul events.

“meaningful” means the results can be related,
without undue hardship, to aspects of the user interfaces (APIs), e.g., Hewlett Packard’s
interface and application being studied as well as Application Response-time Measurement
users' actions at higher levels of abstraction than APl [Hewlett Packard 1998], addresses the
simple key presses and mouse clicks). A problem of monitoring APl usage to help
reasonable approach would assume no more than software developers evaluate the fit between
a typical event-based user interface system, such the design of an API and how it is actually
as provided by the Macintosh Operating System, used. Insights gained in this area may gener-
Microsoft Windows, X Window System, or Java alize to the problem of monitoring Ul usage
Abstract Window Toolkit, and developers would to evaluate the fit between the design of a Ul
not be required to adopt a particular UIMS nor and how it is actually used.

call an APl to report every potentially interesting, |nternet-based application monitoring sys-
event. tems, e.g., AppScope [Aqueduct Software
1998] and Talkback [Full Circle Software
1998], have begun to address issues of col-
lecting application failure data on a poten-
tially large and ongoing basis over the
Internet. The techniques developed to make
this practical for application failure monitor-
ing could be applicable in the domain of
large-scale, ongoing collection of user inter-
A number of researchers and practitioners have action data over the Internet.

addressed related issues in capturing and npumber of researchers have addressed

evaluating event data in the realm of softwar@ oplems in the area of mapping between lower

testing and debugging: level events and higher level events of interest:

* Work in distributed event monitoring, e.g.,.
GEM [Mansouri-Samani and Sloman 1991],

Monitoring of application programmatic

5.3 Related Work and Future Directions

There are a number of related techniques that
have been explored, both in academia and
industry, that have the potential of providing

useful insights into how to more effectively

exploit Ul events as a source of usability

information.

Work in the area of event histories, e.g., [Kos-
bie and Myers 1994], and undo mechanisms

July 30, 1999

Extracting Usability Information from User Interface Events .

has addressed issues involved in grouping
lower level Ul events into more meaningful
units from the point of view of users’ tasks.
Insights gained from this work, and the actual
event representations used to support undo
mechanisms, might be exploited to capturg
events at higher levels of abstraction than are
typically available at the window system
level.

Work in the area of user modeling [User
Modeling 1998] is faced with the problem of,

inferring users’ tasks and goals based on user
background, interaction history, and current

context in order to enhance human-computer
interaction. The techniques developed in this

area, which range from rule-based to statisti-
cally-oriented machine-learning techniques
might eventually be harnessed to infer highe.
level events from lower level events in sup-
port of usability evaluations based on Ul
events.

Work in the area of programming by demon-*
stration [Cypher 1994] and plan recognition
and assisted completion [Cypher 1991] also
addresses problems involved in inferring uses
intent based on lower level interactions. This
work has shown that such inference is feasi-
ble in at least some structured and limited
domains, and programming by demonstration
appears to be a desirable method for specify-
ing expected or unexpected patterns of events

repairing breakdowns
complex systems. For example:

32

series similarities in large data sets [Agrawal
et al. 1996] may be applicable in uncovering
patterns relevant to investigators interested in
evaluating usage and usability based on Ul
events.

The process discovery techniques investi-
gated by [Cook and Wolf 1996] provide

insights into problems involved in automati-

cally generating models to characterize the
sequential structure of event traces

The process validation techniques investi-
gated by [Cook and Wolf 1997] provide
insights into problems involved in comparing
traces of events against models of expected
behavior.

Finally, there are numerous domains in which
?vent monitoring has been used as a means of
identifying and, in some cases, diagnosing and

in the operation of

Network and enterprise management tools for
automating network and application adminis-
tration, e.g., TIBCO Hawk [TIBCO 1998].

Product condition monitoring, e.g., high-end
photocopiers or medical devices that report
data back to equipment manufacturers to
allow performance, failures, and maintenance
issues to be tracked remotely [Lee 1996].

CONCLUSIONS

for sequence detection and comparison PU{ye have surveyed a number of computer-aided

poses. techniques for extracting usability-related
» Layered protocol models of interaction, e.g.information from Ul events. Our classification
[Nielsen 1986; Taylor 1988a & 1988b], allow scheme includes the following categories: synch
human-computer interactions to be modelednd search techniques; transformation
at multiple levels of abstraction. Such techtechniques; techniques for performing simple
niqgues might be useful in specifying howcounts and summary statistics; techniques for
higher level events are to be inferred based gserforming sequence detection, comparison, and
lower level events. Command languageharacterization; visualization techniques; and
grammars (CLGs) [Moran 1981] and task-inally, techniques that provide integrated
action grammars (TAGs) [Payne and Greervaluation support.
1986] are other potentially useful modelingv
techniques for specifying relationships V€'Y few of the surveyed approaches support

between human-computer interactions anfansformation, which we argue is a critical
users' tasks and goals subprocess in the overall process of extracting

. . eaningful usability-related information from
Work in the area of automated discovery and va[—jl g 4

S . | events.
idation of patterns in large corpora of event data

might also provide valuable insights: Our current re_search involves explori_ng
« Data mining techniques for discovering assotechniques and infrastructure for performing

ciation rules, sequential patterns, and timelransformation and analysis automatically and in

context in order to greatly reduce the amount of

July 30, 1999

33 J D. H. Hilbert and D. F. Redmiles

data that must ultimately be reported. It is an A usability professional from a large software
open question whether such an approach might development organization recently reported to us
be scaled up to large-scale and ongoing use over that the usability team is often approached by
the Internet. If so, we believe that automated design and development team members with
techniques, such as those surveyed here, will be questions such as “how often do users do X?” or
useful in capturing indicators of the “big picture”“how often does Y happen?”. This is obviously
regarding application use in the field. Howeveruseful information for developers wishing to
we believe that such techniques may be lesssess the impact of suspected problems or to
suited to identifying subtle, nuanced usabilityfocus development effort for the next version.
issues. Fortunately, these strengths anidowever, it is not information that can be
weaknesses nicely complement the strengths analiably collected in the usability lab. We believe
weaknesses inherent in current usability testinthat automated usage data collection techniques
practice, in which subtle usability issues arewill eventually complement traditional usability
identified through careful human observationgvaluation practice, not only by supporting
but in which there is little sense of the “bigdevelopers as described above, but also in
picture” of how applications are used on a largéelping assess the impact of, and focusing the
scale. efforts of, usability evaluations.

July 30, 1999

Extracting Usability Information from User Interface Events . 34

REFERENCES

The following table provides an index into the references based on the categories established by the
comparison framework.

Category Approaches

Playback [Neal & Simmons 1983], Apple [Weiler 1993], SunSoft [Weiler
1993], Microsoft [Hoiem & Sullivan 1994], 1-Observe [Badre et a. 1995]

Incident Monitoring [Chen 1990], User-Identified Cls [Hartson et al.
1996], CHIME [Badre & Santos 1991], EDEM [Hilbert & Redmiles 1997]

Countsand Summary Statistics | UIMS [Buxton et a. 1983], MIKE [Olsen & Halversen 1988], KRI/AG
[Lowgren & Nordgvist 1992], Long-Term Monitoring [Kay & Thomas
1995], AUS [Chang & Dillon 1997], EORS & EUV S[ErgoLight Usability
Software 1998]. Related: AppScope [Aqueduct Software 1998], Talkback
[Full Circle Software 1998]

LSA [Sackett 1978], Fisher’s Cycles [Fisher 1988], TOP/G [Hoppe 1988],
MRP [Siochi & Hix 1991], Expectation Agents [Girgensohn et al. 1994],
EDEM [Hilbert & Redmiles 1997], USINE [Lecerof & Paterno 1998].
Related: TSL [Rosenblum 1991], Amadeus [Selby et al. 1991], YEAS
[Krishnamurthy & Rosenblum 1995], EBBA [Bates 1995], GEM [Man
souri-Samani & Sloman 1997]

ADAM [Finlay & Harrison 1990], UsAGE [Ueling & Wolf 1995], EMA
[Balbo 1996], USINE [Lecerof & Paterno 1998], EUVS [ErgoLight
Usability Software 1998Related: Process Validation [Cook & Wolf 1997]

Markov-based [Guzdial 1993], Grammar-based [Olson et al. 1994].
Related: Process Discovery [Cook & Wolf 1995]

MacSHAPA[Sanderson et al. 1994], DRUM [Macleod & Rengger 1993],
Hawk [Guzdial 1993], EORS & EUVS [ErgoLight Usability Software
1993].

Synchronization and Searching

Transformation

Sequence Detection

=

Sequence Comparison

Sequence Char acterization

Integrated Support

BADRE, A.N., GUzDIAL, M., HUDSON, S.E., AND
SANTOS, PJ. A user interface evaluation
environment using synchronized video, visu-
alizations, and event trace data. Journal of
Software Quality, Vol. 4, 1995.

BADRE, A.N. AND SaNTOS, PJ. CHIME: A
knowledge-based computer-human interac-
tion monitoring engine. Tech Report GIT-

ABBOTT, A. A Primer on sequence methods.
Organization Science, Vol .4, 1990.

AGRAWAL, R., ARNING, A., BOLLINGER, T.,
MEHTA, M., SHAFER, J., SRIKANT, R. The
Quest data mining system. In Proceedings of
the 2nd International Conference on Knowl-
edge Discovery in Databases and Data Min-
ing. 1996.

AHO, A.V., KERNIGHAN, B.W., AND WEIN-
BERGER, PJ. The AWK programming lan-
guage. Addison-Wesley, Reading, MA.
1988.

ALLISON, PD. AND LIKER, JK. Analyzing
sequential categorical data on dyadic interac-
tion: A comment on Gottman. Psychological
Bulletin, 2, 1987.

AQUEDUCT SOFTWARE. AppScope Web Pages.
URL.: http://www.aqueduct.com/. 1998.

GVU-91-06. 1991a

BADRE, A.N. AND SANTOS, PJ. A knowledge-
based system for capturing human-computer
interaction events. CHIME. Tech Report
GIT-GVU-91-21. 1991b.

BAECKER, R.M, GRUDIN, J.,, BuxToN, WA.S,,
AND GREENBERG, S. (Eds.)). Readings in
Human-Computer Interaction: Toward the
Year 2000. Morgan Kaufmann, San Mateo,
CA, 1995.

BALBO, S. EMA: Automatic analysis mechanism

July 30, 1999

35 . D. H. Hilbert and D. F. Redmiles
for the ergonomic evaluation of user inter-
faces. CSIRO Technical report. 1996.

BATES, PC. Debugging heterogeneous distrib-
uted systems using event-based models of
behavior. ACM Transactions on Computer
Systems, Val. 13, No. 1, 1995.

BELLOTTI, V. A framework for assessing applica-
bility of HCI techniques. In Proceedings of
INTERACT’90.1990.

BuxToN, W., LAMB, M., SHEMAN, D., AND
SMITH, K. Towards a comprehensive user
interface management system. In Proceed-
ings of SIGGRAPH831983.

CHANG, E. AND DILLON, T.S. Automated usabil-
ity testing. In Proceedings of INTERACT'97.

CHEN, J. Providing intrinsic support for user
interface monitoring. In Proceedings of
INTERACT’'90.1990.

Cook, JE. AND WOLF, A.L. Toward metrics for
process validation. In Proceedings of
ICSP’94.1994.

Cook, JE., AND WoOLF, A.L. Automating pro-
cess discovery through event-data analysis.
In Proceedings of ICSE’'93.995.

Cook, JE. AND WOLF, A.L. Software process
validation: quantitatively measuring the cor-
respondence of a process to a model. Tech
Report CU-CS-840-97, Department of Com-
puter Science, University of Colorado at
Boulder. 1997.

Cook, R., KAY, J, RYaN, G., AND THOMAS,
R.C. A toolkit for appraising the long-term
usability of a text editor. Software Quality
Journal,Val. 4, No. 2, 1995.

Cuomo, D.L. Understanding the applicability of

sequential data analysis techniques for anal-
ysing usability data. Nielsen, J. (Ed.).

1991.

DODGE, M. AND STINSON, C. Running Microsoft
Excel 2000Microsoft Press. 1999

DOUBLEDAY, A., RYAN, M., SPRINGETT, M., AND
SUTCLIFFE, A. A comparison of usability
techniques for evaluating design. In Pro-
ceedings of DIS'971997.

ELGIN, B. Subjective usability feedback from the
field over a network. In Proceedings of
CHI'95. 1995.

ERGOLIGHT USABILITY SOFTWARE. Operation
Recording Suite (EORS) and Usability Vali-
dation Suite (EUV S) Web pages. URL: http:/
/www.ergolight.co.il/. 1998.

FARAONE, SV. AND DorrMAN, D.D. Lag
sequential analysis; Robust statistical meth-
ods. Psychological Bulletin, 101, 1987.

FEATHER, M.S., NARAYANASWAMY, K., COHEN,
D., AND FICKAS, S. Automatic monitoring of
software requirements. Research Demonstra-
tion in Proceedings of ICSE’'971997.

FIckAs, S. AND FEATHER, M.S. Requirements
monitoring in dynamic environments. IEEE
International Symposium on Requirements
Engineering1995.

FINLAY, J. AND HARRISON, M. Pattern recogni-
tion and interaction models. In Proceedings
of INTERACT’'901990.

FISHER, C. Advancing the study of programming
with computer-aided protocol anaysis. In
Olson, G., Soloway, E., and Sheppard, S.
(Eds)). Empirical Studies of Programmers,
1987 WorkshopAblex, Norwood, NJ, 1987.

FISHER, C. AND SANDERSON, P Exploratory
sequential data analysis: exploring continu-
ous observationa data. Interactions Vol.3,
No. 2, ACM Press, Mar. 1996.

Usability Laboratories Special Issue ofFgyer C. Protocol Analyst's Workbench:

Behaviour and
Vol.13, No.1 & 2, 1994.

CYPHER, A. (Ed.). Watch what | do: program-
ming by demonstrationMIT Press, Cam-
bridge MA, 1993.

CYPHER, A. Eager: programming repetitive tasks
by example. In Proceedings of CHI'91

July 30, 1999

Information Technology,

Design and evaluation of computer-aided
protocol analysis. Unpublished PhD thesis,
Carnegie Mellon University, Department of
Psychology, Pittsburgh, PA, 1991.

FITTs, P.M. Perceptual motor skill learning. In
Melton, A.W. (Ed.). Categories of human
learning. Academic Press, New York, NY,

Extracting Usability Information from User Interface Events

1964. S.J.

FuLL CIRCLE SoFTWARE. Talkback Web pages.
URL.: http://www.fullsoft.com/. 1998.

GIRGENSOHN, A., REDMILES, D.F., AND SHIP-
MAN, FEM. Ill. Agent-Based Support for
Communication between Developers and
Users in Software Design. In Proceedings of
the Knowledge-Based Software Engineering
Conference ' 94. Monterey, CA, USA, 1994.

GOODMAN, D. Complete HyperCard 2.2 Hand-
book. ToExcel. 1998.

GOTTMAN, J.M. AND RoY, A K. Sequential anal-
ysis: A guide for behavioral researchers.
Cambridge University Press, Cambridge,
England, 1990.

GRUDIN, J. Utility and usability: Research issues
and development contexts”. Interacting with
computers, Vol. 4, No. 2, 1992.

GuzbIAL, M. Deriving software usage patterns
from log files. Tech Report GIT-GVU-93-41.
1993.

GuUzDIAL, M., SANTOS, P., BADRE, A., HUDSON,
S.,AND GRAY, M. Analyzing and visualizing
log files: A computational science of usabil-
ity. Presented at HCI Consortium Workshop
1994,

GuUzDIAL, M, WALTON, C., KONEMANN, M., AND
SoLoOwAY, E. Characterizing process chang
using log file data. Tech Report GIT-GVU-
93-44. 1993.

HARTSON, H.R., QasTILLO, J.C., KELSO, J.,AND
NEALE, W.C. Remote evaluation: the net-
work as an extension of the usability labora:
tory. In Proceedings of CHI'961996.

HELANDER, M. (Ed.). Handbook of human-com-
puter interaction.Elsevier Science Publish-
ers B.V. (North Holland), 1998.

HEWLETT PACKARD. Application Response Mea-
surement API. URL: http://www.hp.com/
openview/rpm/arm/. 1998.

HiLBerT, D.M. AND ReDMILES, D.F. An
approach to large-scal e collection of applica-
tion usage data over the Internet. In Proceed-
ings of ICSE’981998a.

HILBERT, D.M. AND REDMILES, D.F. Agents for

36

collecting application usage data over the
Internet. In Proceedings of Autonomous
Agents’98.1998b.

HILBERT, D.M., RoBBINS, J.E., AND REDMILES,
D.F, Supporting Ongoing User Involvement
in Development via Expectation-Driven
Event Monitoring. Tech Report UCI-ICS-97-
19, Department of Information and Com-
puter Science, University of California, Irv-
ine. 1997.

HIRSCHBERG, D.S. A linear space algorithm for
computing maximal common subsequences.
Communications of the ACMpl. 18, 1975.

Holem, D.E. AND SULLIVAN, K.D. Designing
and using integrated data collection and
analysis tools; challenges and consider-
ations. Nielsen, J. (Ed.). Usability Laborato-
ries Special Issue of Behaviour and
Information Technologwol.13, No.1 & 2,
1994.

Hoppe, H.U. Task-oriented parsing: A diagnostic
method to be used by adaptive systems. In
Proceedings of CHI'881988.

JOHN, B.E. AND KIERAS, D.E. The GOMS family
of user interface analysis techniques:. com-
parison and contrast. ACM Transactions on
Computer-Human Interactioivol. 3, No. 4,
1996.

e:JOHN, B.E. AND KIERAS, D.E. Using GOMS for

user interface design and evaluation: which
technique? ACM Transactions on Computer-
Human Interactionyol. 3, No. 4, 1996.

KAY, J. AND THOMAS, R.C. Studying long-term
system use. Communications of the ACM,
Voal. 38, No. 7, 1995.

Kosslg, D.S. AND MYERS, B.A. Extending pro-
gramming by demonstration with hierarchi-
cal event histories. In Proceedings of East-
West Human Computer Interaction’3094.

KRISHNAMURTHY, B AND ROSENBLUM, D.S.
Yeast: A Genera Purpose Event-Action Sys-
tem. IEEE Transactions on Software Engi-
neering,Vol. 21, No. 10, 1995.

LECEROF, A. AND PATERNO, F. Automatic sup-
port for usability evaluation. IEEE Transac-
tions on Software Engineeringpl. 24, No.

July 30, 1999

37 J D. H. Hilbert and D. F. Redmiles

10, 1998.

LEE, B. Remote diagnostics and product lifecycle
monitoring for high-end appliances: a new
Internet-based approach utilizing intelligent
software agents. In Proceedings of the Appli-
ance Manufacturer Conference. 1996.

LEwIS, R. AND STONE, M. (Ed). Mac OS in a
Nutshell. O’'Reilly and Associates. 1999.

LOWGREN, J. AND NORDQVIsT, T. Knowledge-

based evaluation as design support for

graphical user interfacetn Proceedings of
CHI'92. 1992.

MACLEOD, M., AND RENGGER, R. The Develop-
ment of DRUM: A Software Tool for Video-
assisted Usability Evaluation. In Proceed-
ings of HCI'93.1993.

MANSOURI-SAMANI, M. AND SLOMAN, M. GEM:
A generalised event monitoring language for
distributed systems. IEE/BCS/IOP Distrib-
uted Systems Engineering Journé| 4, No
2,1997.

MERCURY INTERACTIVE. WinRunner and XRun-
ner Web Pages. URL: http://www.merc-
int.com/. 1998.

MORAN, T. P. The command language grammar:
a representation for the user interface of
interactive computer systems. International
Journal of Man-Machine Studig$s, 1981.

NEAL, A.S. AND SIMONS, R.M. Playback: A
method for evaluating the usability of soft-
ware and its documentation. In Proceedings
of CHI'83. 1983.

NIELSEN, J. A virtual protocol model for com-
puter-human interaction. International Jour-
nal of Man-Machine Studig24, 1986.

NIELSEN, J. Usability engineering.Academic
PressAP Professional, Cambridge, MA,
1993.

NYE, A. AND O'REILLY, T. X Toolkit Intrinsics
Programming Manual for X11, Release 5.
O'Reilly and Associates. 1992.

OLsEN, D.R. AND HALVERSEN, B.W. Interface

OLsoN, G.M., HERBSLEB, J.D., AND RUETER,
H.H. Characterizing the sequential structure
of interactive behaviors through statistical
and grammatical techniques. Human-Com-
puter Interaction Special Issue on ESDA,
Vol.9, 1994.

PAYNE, S.G. AND GREEN, T.R.G. Task-action
grammars; A model of the mental represen-
tation of task languages. Human-Computer
Interaction, Vol. 2, 1986.

PENTLAND, B.T. A grammatical model of organi-
zational routines. Administrative Science
Quarterly.1994.

PENTLAND, B.T. Grammatical models of organi-
zational processes. Organization Science.
1994.

PeTzoLD, C. Programming WindowsMicrosoft
Press. 1998.

PREECE, J., ROGERS, Y., SHARP, H., BENYON, D.,
HOLLAND, S., AND CAREY, T. Human-com-
puter interaction Addison-Wesley, Woking-
ham, UK, 1994,

RosenBLUM, D.S. Specifying concurrent sys-
tems with TSL. IEEE SoftwareVol. 8, No.
3, 1991.

RusIN, C. Running Microsoft Word 2000.
Microsoft Press. 1999.

SACKETT. G.P. Observing behavior (Vol. 2). Uni-
versity Park Press, Baltimore, MD, 1978.

SANDERSON, PM. AND FISHER, C. Exploratory
sequential data analysis: foundations.
Human-Computer InteractioSpecial Issue
on ESDAVoI. 9, 1994.

SANDERSON, PM., ScotT, JJ.P, JOHNSTON, T.,
MAINZER, J., WATANABE, L.M., AND JAMES,
JM. MacSHAPA and the enterprise of
Exploratory Sequential Data Anaysis
(ESDA). International Journal of Human-
Computer Studied/ol. 41, 1994.

SANTOS, PJ. AND BADRE, A.N. Automatic chunk
detection in human-computer interaction. In
Proceedings of Workshop on Advanced

usage measurements in a user interface man- Visual Interfaces AVI ‘94Also available as

agement systenin Proceedings of UIST'88.
1988.

July 30, 1999

Tech Report GIT-GVU-94-4. 1994.
SCHIELE, F. AND HopPg, H.U. Inferring task

Extracting Usability Information from User Interface Events .

structures from interaction protocols. In Pro-
ceedings of INTERACT’9Q990.

SELBY, R.W., PORTER, A.A., ScHmIDT, D.C,,
AND BERNEY, J. Metric-driven analysis and
feedback systems for enabling empirically
guided software development. In Proceed-
ings of ICSE’911991.

SiocHI, A.C. AND EHRICH, R.W. Computer anal-
ysis of user interfaces based on repetition in
transcripts of user sessons. ACM Transac-
tions on Information Systen991.

SiocHI, A.C. AND Hix, D. A study of computer-
supported user interface evaluation using
maximal repeating pattern anaysis. In Pro-
ceedings of CHI'911991.

SMmiLowITz, E.D., DARNELL, M.J., AND BENSON,
A.E. Are we overlooking some usability test-
ing methods? A comparison of lab, beta, and
forum tests. Nielsen, J. (Ed.). Usability Lab-

oratories Special Issue of Behaviour and

Information Technologyol.13, No.1 & 2,
1994.

SUN MICROSYSTEMS. SunTest JavaStar Web
Pages. URL: http://www.sun.com/suntest/.
1998.

SWEENY, M., MAGUIRE, M., AND SHACKEL, B.
Evaluating human-computer interaction: A

framework. International Journal of Man-

Machine Studiesvol.38, 1993.

TAYLOR, M.M. Layered protocols for computer-
human dialogue I: Principles. International

38

Journal of Man-Machine Studie28, 1988a.

TAYLOR, M.M. Layered protocols for computer-
human dialogue II: Some practical issues.
International Journal of Man-Machine Stud-
ies, 28, 1988b.

TAYLOR, R.N. AND CouTAz, J. Workshop on
Software Engineering and Human-Computer
Interaction: Joint Research Issues. In Pro-
ceedings of ICSE'94.994.

TIBCO. HAWK Enterprise Monitor Web Pages.
URL: http://www.tibco.com/. 1998.

UEHLING, D.L. AND WOLF, K. User Action
Graphing Effort (USAGE). In Proceedings of
CHI'95. 1995.

USER MODELING INC. (UM INC.). Home Page.
URL: http://um.org/. 1998.

WEILER, P. Software for the usability lab: a sam-
pling of current tools. In Proceedings of
INTERCHI'93.1993.

WHITEFIELD, A., WILSON, F., AND DOWELL, J. A
framework for human factors evaluation.
Behaviour and Information Technologygl.
10, No. 1, 1991.

WOLF, A.L. AND ROSENBLUM, D.S. A Study in
Software Process Data Capture and Analy-
sis. In Proceedings of the Second Interna-
tional Conference on Software Process,
1993

ZUKOWSKI, J. AND LOUKIDES, M. (Ed). Java Awt
ReferenceO’Reilly and Associates. 1997.

July 30, 1999

